Abstract:
An air vehicle defining a plane of symmetry includes a pair of outboard panels which are rotatably mounted on the lifting body of the vehicle and respectively extend in opposite directions from the plane of symmetry. A control system collectively rotates the outboard panels to selectively contribute forces from the panels to the lift on the air vehicle. The control system also differentially rotates the outboard panels to control roll of the air vehicle. A pair of empennage panels are also rotatably mounted on the lifting body to establish a dihedral angle centered on the plane of symmetry. The control system collectively rotates these empennage panels to control pitch, and differentially rotates the empennage panels to control yaw, of the air vehicle. In a high speed flight regime the lifting body alone is sufficient and the outboard panels are collectively rotated to reduce drag and contribute substantially zero lift. In a slow speed flight regime, the outboard panels are collectively rotated to contribute to the lift on the air vehicle.
Abstract:
An air bag landing system for an aircraft. The landing system has an air bag assembly which is stored in the fuselage of the aircraft during cruise and which extends for landing. The assembly consists of a rigid arm with either two or three folding portions and an inflatable bag attached to the underside of the arm. The inflatable bag cushions the impact of the aircraft at landing. Actuators are provided to extend and retract the assembly.
Abstract:
A computer-implemented method of controlling an aircraft during autonomous landing. The method includes using a computer for performing the following: applying image processing on an image captured by a camera on board the aircraft while approaching a runway for identifying in the image a touchdown point (TDP) of the runway; calculating a deviation, in image parameters, of the TDP relative to the center of the image; converting the deviation in image parameters to angular and distance deviation values based on predefined ratios; calculating an offset of the aircraft's position relative to a landing corridor ending at the identified TDP based on the calculated angular and distance deviation; and transmitting the calculated offset to an aircraft control system configured to provide instructions for controlling the aircraft; wherein the offset is used for controlling the aircraft for guiding the aircraft towards the landing corridor to enable landing.
Abstract:
Disclosed herein are aircraft and landing gear systems configured to fix an aircraft to the ground. For example, the aircraft and aircraft systems configured for ground manipulation. In one aspect, an aircraft with an arm and end-effector may be fixed a ground surface to facilitate ground-based robotic manipulation tasks.
Abstract:
This disclosure generally relates to an automotive drone deployment system that includes at least a vehicle and a deployable drone that is configured to attach and detach from the vehicle. More specifically, the disclosure describes the vehicle and drone remaining in communication with each other to exchange information while the vehicle is being operated in an autonomous driving mode so that the vehicle's performance under the autonomous driving mode is enhanced.
Abstract:
The vertical takeoff and landing unmanned aerial vehicle includes a pair of selectively rotatable ducted fans and a selectively rotatable thrust vectoring nozzle providing vertical takeoff and landing for an unmanned aerial vehicle or a similar type of aircraft. A pair of fixed forward-swept wings are mounted on a rear portion of a fuselage, and a pair of canards are mounted on a top end of a forward portion of the fuselage. The pair of ducted fans are respectively mounted on free ends of the pair of canards, and are selectively rotatable about an axis parallel to a pitch axis of the fuselage. An engine is mounted in the rear portion of the fuselage, and a thrust vectoring nozzle is mounted on the rear portion of the fuselage for directing thrust exhaust from the engine. The thrust vectoring nozzle is selectively rotatable about an axis parallel to the pitch axis.
Abstract:
This disclosure describes a configuration of an unmanned aerial vehicle (UAV) landing gear assembly that includes adjustable landing gear extension that may be extended or contracted so that the body of the UAV is contained in a horizontal plane when the UAV is landed, even on sloping surfaces. For example, when a UAV is landing, the slope of the surface may be determined and the landing gear extensions adjusted based on the slope so that the body of the UAV remains approximately horizontal when the UAV lands and is supported by the landing gear extensions.
Abstract:
An embodiment of an unmanned aerial vehicle, which may be connected to a lighter-than-air carrier, may have a ratio of a lifting force of the carrier to a weight of the vehicle from 1.1:1 to 3:1. The vehicle, excluding payload, may have a mass of from 30 kg to 150 kg. The vehicle may have a wingspan of from 20 m to 60 m.
Abstract:
Electric aircraft, including in-flight rechargeable electric aircraft, and methods of operating electric aircraft, including methods for recharging electric aircraft in-flight, through the use of unmanned aerial vehicle (UAV) packs flying independent of and in proximity to the electric aircraft.
Abstract:
This disclosure describes a configuration of an unmanned aerial vehicle (UAV) landing gear assembly that includes adjustable landing gear extension that may be extended or contracted so that the body of the UAV is contained in a horizontal plane when the UAV is landed, even on sloping surfaces. For example, when a UAV is landing, the slope of the surface may be determined and the landing gear extensions adjusted based on the slope so that the body of the UAV remains approximately horizontal when the UAV lands and is supported by the landing gear extensions.