Abstract:
An intelligent destination elevator control system streamlines the efficiency and control of destination elevators. The system monitors a building's population and predicts elevator traffic conditions. The system may monitor attributes of the destination elevators. Based on the monitored data, the system may generate a data structure that renders time-tables and target elevator service quality parameters that may control the destination elevators. A time-table and target elevator service quality parameters may be selected to control destination elevators according to one or more customer selectable mode of operation parameters. The data structure may be processed to control UP and/or DOWN transportation capacities of the destination elevators while satisfying the one or more customer selectable mode of operation parameters.Some intelligent destination elevator control systems may control when elevator cars of a group service the floors of a building. Control of the elevator cars may be flexible to allow the system to increase or decrease traffic capacities of the elevator cars in accordance with anticipated traffic conditions.
Abstract:
An elevator installation for zonal operation in a building, a method for zonal operation of such an elevator installation and method for modernization of an existing elevator installation, in which the building is divided into several zones. The elevator installation includes several elevators for the transport of persons/goods in cages. A zone is associated each elevator. At least one changeover storey for the changing over of persons/goods between cages of different zones is arranged between the zones. At least one elevator has at least two cages which are arranged one above the other and which are movable independently of one another at a pair of guide rails.
Abstract:
An elevator group control apparatus collectively controls an elevator system where at least two cars can travel in each shaft independently of each other. The apparatus has a destination floor registration device installed at each hall for passengers to register destination floors and to indicate to passengers which cars will serve respectively for the registered destination floors. Priority zones and a shared zone for upper cars and for lower cars are set; judgment is made as to whether the shared zone set can be entered by an upper or lower car; a car is put on standby based on the judgment a car is sent to a withdrawal floors, as necessary, after a service is completed. A car is selected as a candidate for assignment to a destination call if, according to the destination to be served by each car and the zones set for each car, so that the car would cause neither collision nor safety stop; and a car is assigned based on the selection.
Abstract:
An elevator installation for zonal operation in a building, a method for zonal operation of such an elevator installation and a method for modernization of an existing elevator installation, in which the building is divided into several zones. The elevator installation includes several elevators for the transport of persons/goods in cages. A zone is associated with each elevator. At least one changeover storey for the changing over of persons/goods between cages of different zones is arranged between the zones. At least one elevator comprises at least two cages which are arranged one above the other and which are movable independently of one another at a pair of guide rails.
Abstract:
A method controls an elevator system including multiple elevator cars and multiple floors. A new passenger at one of the floors signals a hall call. In response to receiving the hall call, the method determines, for each car, a set of all possible future states of the elevator system. The future states depend on the current state of the system, which is defined by passengers already assigned to cars, the direction of travel, position and velocity of the cars. A cost function is evaluated to determine a cost for each set of all possible future states. Then, the car associated with the set having a least cost is assigned to service the hall call. The method is applicable to any type of traffic. It is particularly well-suited for up-peak traffic because it handles efficiently the uncertainty in passenger destinations.
Abstract:
In an elevator system in which two cars operate in each shaft, there is provided an elevator group control apparatus providing efficient services while preventing collisions of cars in each shaft. The elevator group control apparatus includes a traffic detection part which detects data of car traffic generated in a building; a zone setting part which sets a dedicated zone and a common zone for each of upper and lower cars in accordance with detection by the traffic detection part; an assignment decision part which decides a car to be assigned to a call generated at a hall in accordance with the call generation floor, direction of response to the call, and a zone set by the zone setting part; an entry determination part which, when a first of two cars in each shaft is coming into the common zone from its dedicated zone, determines, based on position, direction of movement, and state of the other car in the same shaft, whether the first car in each shaft is permitted to enter the common zone; a passing-by instruction part which gives a passing-by instruction to a prescribed floor in the dedicated zone to make each car exit from the common zone to its dedicated zone after each car has entered the common zone; and an operation control part which controls operation of each car based on a decision by the assignment decision part, a determination by the entry determination part, and an instruction by the passing-by instruction part.
Abstract:
A rule base storing control rule sets predicts elevator group management performance, such as waiting time distribution, obtained when applying each rule set stored in the rule base to the current traffic situation, and selects a rule set in accordance with a performance prediction. In addition, a weight database stores weighting parameters of a neural network corresponding to the rule sets and performance learning measures for correcting the weighting parameters in accordance with learning by the neural network. As a result, the optimal rule set is applied at all times for group management control of the elevators to provide passengers with excellent service and to enhance prediction accuracy in correspondence with the actual operational situation of the elevators.
Abstract:
A rule base storing control rule sets simulates the behavior of each car of an elevator system in real time by assigning scanning to each car which is caused to run until the direction of running is reversed, while applying a specified rule set in the rule base to the current traffic condition, and predicts group supervisory control performance upon application of the specified rule set. In response to the results of performance prediction, an optimal rule set is selected and a real time simulation can be carried out during a group supervisory control operation, so that group supervisory control can be performed on multiple elevator cars while applying the optimal rule set at all times, thus providing excellent service.
Abstract:
The present invention prepares a rule base storing a plurality of control rule sets, simulates the behavior of each car in real time by assigning scanning to each car which is caused to run until the direction of running thereof is reversed while applying a specified rule set in the rule base to the current traffic condition, and predicts group supervisory control performance which is obtained upon application of the specified rule set. In response to the results of performance prediction, an optimal rule set is selected and a real time simulation can be carried out during a group supervisory control operation, so that group supervisory control can be performed on a plurality of elevators while applying thereto the optimal rule set at all times, thus providing excellent service.
Abstract:
A method for training a neural network used to estimate for an elevator the remaining response time for the elevator to service a hall call. The training, which results in adjusting connection weights between nodes of the neural network, is performed while the elevator is in actual operation. The method is not restricted to any particular architecture of neural network. The method uses a cutoff to limit changes to the connection weights, and provides for scaling the different inputs to the neural network so that all inputs lie in a predetermined range. The method also provides for training in case the elevator is diverted from servicing the hall call by an intervening hall call.