Abstract:
An exemplary elevator passenger interface device includes a touch screen configured to allow a passenger to indicate a request for elevator service by touching the screen. An assistance button is positioned near the touch screen. A controller is configured to determine a destination requested by a passenger touching the screen. The controller is also configured to determine whether the assistance button has been manipulated and then to determine a destination requested by a passenger from a subsequent manipulation of the assistance button.
Abstract:
Elevator system passengers are transported in one or more of a plurality of elevator cars. The elevator cars can require different amounts of energy to operate. Passenger trips can be allocated to one car or another car based on the expected energy consumption for the trips in one or the other car.
Abstract:
In an elevator system including at least two elevator groups having at least one shared floor and destination call appliances on at least the shared floor for receiving destination calls from passengers, destination call appliances are connected to group controls of the elevator groups. Destination calls from passengers are divided between the elevator groups based on defined division criteria.
Abstract:
The present invention discloses a method and a system for dividing destination calls in an elevator system, which comprises at least two elevator groups, which elevator groups have one or more shared floors and also destination call appliances on at least the aforementioned shared floors for receiving destination calls given by passengers. The destination call appliances are connected to the group controls of the elevator groups, and the destination calls given by passengers are divided between the elevator groups on the basis of the defined division criteria.
Abstract:
An elevator group control system includes a reference route generating portion, which for each elevator, generates a reference route which the elevator should follow with respect to the time axis and position axis; and an assignment portion which selects an elevator for assignment to a generated hall call so as to make the actual trajectory of each elevator closer to its reference route. Reference routes which guide the cage's trajectory into temporally equal interval condition are generated, and car assignment is executed to allow the cages to settle in temporally equal interval condition over a long period of time.
Abstract:
An elevator group control system is provided which stably keeps cage's position in temporally equal interval condition over a long period of time.The present invention provides a system comprising: reference route generating means, which for each elevator, generates a reference route which the elevator should follow with respect to the time axis and position axis; and assignment means which selects an elevator for assignment to a generated hall call so as to make the actual trajectory of each elevator closer to its reference route.Since reference routes which guides the cage's trajectory into temporally equal interval condition are generated and car assignment is executed so as to make the respective cages follow their reference routes, it is possible to allow the cages to settle in temporally equal interval condition over a long period of time.
Abstract:
Energy saving methods and apparatus for elevator systems having a plurality of elevator cars operating in a plurality of elevator shafts. The present invention provides methods and apparatus for determining which one of the plurality of elevator cars is to be assigned to a new hall call in order to reduce the net energy consumption of the elevator system over time.
Abstract:
An elevator group management and control apparatus that manages and controls elevators as one group, detects the traffic demands of the elevators in a building; predicts the traffic demand in the near future on the basis of the detected traffic demand; discriminates the traffic pattern of the near future in accordance with the predicted result of the traffic demand; automatically generates candidates from the group management and control rule groups to be applied in the near future on the basis of the traffic pattern which has been predicted and discriminated; evaluates and selects one candidate of the respective rule groups which have been generated; and controls the elevators using the selected rule group, to implement group management and control, always using an appropriate rule group.
Abstract:
An administrative controlling apparatus for elevators, for calling an elevator before a passenger's operation of a hall call button when a passenger who has come to an elevator hall is detected by passenger detection devices. The direction in which the passenger would like to go is predicted based upon the hall call and past passengers. Accordingly, the past usage is regarded as a basis for a statistical learning process. On this basis, the selection of a stand-by elevator or the selection of a tentative allocation elevator is effected. Also, a call is interrupted in accordance with the absence or presence of an elevator call.
Abstract:
A method for controlling an elevator group of double-deck elevators. Landing calls are allocated to the elevators and elevator decks in such a way that the passenger journey time is optimized. The method takes into account the current landing call time and the estimated time of arrival to the destination floor. The method minimizes passenger journey time by allocating the landing call to the deck that will cause the fewest additional stops to the elevator and least additional delay on the way to the passenger destination floor. In addition, the elevator estimated time of arrival to a destination floor is calculated separately for each deck, taking into account the stops already existing for the elevator and the additional stops caused by the selected landing call. Further the landing call is allocated to the deck for which the estimated time of arrival to the destination floor is least. In addition, the best deck for each landing call is selected by minimizing a cost function. The cost function may include the estimated time of arrival to the destination floor. Alternatively, the cost function may also include the estimated time of arrival to the furthest call floor.