Abstract:
A grease trap (1) device for trapping waste material including water and fats, oils and/or greases (FOGs), and for removing at least some of the FOGs from the water. The device includes a first receptacle (3) having a storage volume (31) for storing waste material in a manner that enables FOGs to float on the surface of the water; an inlet (9) for receiving waste material into the first receptacle; a drain (49) having an inlet (47) positioned to capture FOGs floating at and/or near the surface of the water, and an outlet (51) positioned for transferring waste material out of the storage volume; a valve (53) for controlling the flow of waste material through the drain; an outlet (15) enabling cleaned water to exit the first receptacle; and at least one heat exchanger unit (57,59) arranged to remove heat from the waste material stored in the first receptacle.
Abstract:
A bi-directional pump system that can be configured for a plurality of operating modes. The bi-directional pump system includes a plurality of bi-directional pumps each having their own valving system that are connected to a common high pressure manifold, a low pressure manifold and a suction manifold. Via the respective valve systems, each pump can be configured into: (1) a single-acting pumping mode; (2) a double-acting pumping mode; (3) an inactive free motion mode; and (4) an inactive rigid mode. One exemplary application of the bi-directional pump system is on an articulated wave energy conversion system that consists of three floating barges: a front barge, a center barge and a rear barge where the front barge and center barge are hingedly connected as are the center barge and the rear barge. A first set of the bi-directional pumps span the first hinge connection and the second set of bi-directional pumps span the second hinge connection. The bi-directional pump system intakes sea water and, using wave energy, outputs a high pressure flow of sea water for water desalination and/or for driving electrical generators.
Abstract:
A submerged Bladder with a floor level fixed to a height the same as or just below the lowest low tide level has flexible side-walls and a ceiling which is fixed to a floating Buoy. The Bladder flexible walls have a height that is slightly over the length of the lowest low tide level and the highest high tide level. Seawater desalination membranes are fixed under the floor or integrated into the floor. As the tide rises, the Buoy rises with it. The rising Buoy causes the Bladder to open up. As the Bladder opens up, seawater is pulled into the Bladder to fill the new space available inside the Bladder. The seawater is desalinated as it travels through the membranes, and enters the Bladder as desalinated potable water. At peak high tide mark, the Bladder outlet pipe is opened to drain the contents of the Bladder to an on-shore Reservoir. During the draining process, an air-lock valve on top of the Bladder is opened to aid drainage of water. This operation takes place twice a day consistent with tidal flow, every day, for any volume of water, with no cost for external power source.
Abstract:
A system for distributed utilities including electrical power and water. A generation device is provided for converting an available resource to a desired utility; the resource may be water, in which case the generator is a purifier for purifying untreated water, or, alternatively, the generator may convert a fuel to electrical power. In either case, an input sensor is provided for measuring input to the generation device, while an output sensor is provided for measuring consumption of output from the generation device. The monitoring system has a controller for concatenating measured input and consumption of output on the basis of the input and output sensors. Measured parameters are telemetered to a remote site where utility generation and use are monitored and may also be controlled. At least a portion of the electrical power capacity of the electric generation unit may power a water purification unit such as a vapor compression distillation unit, and heat output of the electric generation unit may supply heat to the water purification unit.
Abstract:
A bi-directional pump system that can be configured for a plurality of operating modes. The bi-directional pump system includes a plurality of bi-directional pumps each having their own valving system that are connected to a common high pressure manifold, a low pressure manifold and a suction manifold. Via the respective valve systems, each pump can be configured into: (1) a single-acting pumping mode; (2) a double-acting pumping mode; (3) an inactive free motion mode; and (4) an inactive rigid mode. One exemplary application of the bi-directional pump system is on an articulated wave energy conversion system that consists of three floating barges: a front barge, a center barge and a rear barge where the front barge and center barge are hingedly connected as are the center barge and the rear barge. A first set of the bi-directional pumps span the first hinge connection and the second set of bi-directional pumps span the second hinge connection. The bi-directional pump system intakes sea water and, using wave energy, outputs a high pressure flow of sea water for water desalination and/or for driving electrical generators.
Abstract:
An aquarium bacteria management device may include a tank configured to contain a fluid and a light source configured to illuminate the tank. Electrodes may extend into the tank and be spaced apart from one another. The electrodes may introduce a first electric current through the fluid between the electrodes. A photovoltaic panel may be positioned to receive illumination from the light source and to convert the illumination into a second electric current in order to provide the first electric current to the electrodes.
Abstract:
According to various aspects, exemplary embodiments are disclosed of solar thermal collectors, solar heating systems, and thin plate heat exchangers and absorbers. The thin plate heat exchangers and absorbers may be used for solar applications and/or non-solar applications. In an exemplary embodiment, a photovoltaic thermal collector generally includes a photovoltaic panel, a first layer, and a second layer. The first layer is configured such that thermal energy is transferable from the photovoltaic panel to the first layer. The second layer includes edges sealed to edges of the first layer. A permeable core is disposed between the first and second layers. In operation, a heat transfer fluid may flow through the permeable core, whereby thermal energy is transferable from the first layer to the heat transfer fluid.
Abstract:
The instant invention describes a device and system for dispensing microbial solutions into a wastewater treatment environment. The device contains one or more removable modules that provides the user with the capability of quickly and easily removing one or more of the modules without the need for replacing or removing the entire unit. The modules are preferably designed to hold bags filled with a microbial solution. The bags are fluidly connected to a pump which dispenses the solution to a predetermined location.
Abstract:
Apparatuses for generating electrical power and/or treating water desalinating salt water are described, and may include a top manifold comprising one or more inlets, a bottom manifold comprising one or more outlets, a casing connecting the top manifold and the bottom manifold to define an internal space, and at least one electrode set disposed in the internal space. The electrode set may include a silver chloride cathode in fluid communication with a first fluid container including an aqueous solution, such as diluted sodium chloride solution, and a silver anode in fluid communication with a second fluid container including another aqueous solution, e.g., a higher concentration sodium chloride solution. The electrode set also may include a membrane that allows chloride and sodium ions to pass therethrough, and a connector electrically connecting the cathode to the anode to form an electrical circuit.
Abstract:
A desalination system (100) having an intake unit (110) providing seawater to a pre-treatment unit (120) connected to a reverse osmosis (RO) desalination unit (130) and a post treatment unit (150). The desalination system (100) is configured to operate without any external addition of chemicals to simplify logistics and regulation concerns. The units of the system are configured to prevent biofouling, scaling and corrosion by mechanical and biological means including high flow speeds, biological flocculation of colloids, and making the water entering the RO units inhospitable to bacteria and other organisms that cause biofouling, hence preventing their settlement and removing them with the brine. Recovery rate is lowered and energy is recovered to increase the energetic efficiency and minerals that are added to the product water are taken from the brine.