Abstract:
A pulsed voltage is repeatedly applied between a first electrode and a second electrode to which a gas is supplied, a plasma is generated between the first electrode and the second electrode, and an active species is produced in the plasma. The energy necessary for plasma generation is set to a value greater than or equal to 1.8 W/cm3 and less than or equal to 8.5 W/cm3.
Abstract:
A method and apparatus break down organic materials, typically contaminants, through oxidation. The method for the treatment of a volume of material, provides: a) introducing at least two electrodes into a location, the location containing the volume of material and the volume of material containing one or more species for treatment; b) providing connections between a voltage source and the at least two electrodes; c) applying a voltage of a first polarity to the connections for a first period of time, under the control of a voltage controller; d) applying a voltage of a second, reversed, polarity to the connections for a second period of time, under the control of the voltage controller; e) repeating steps c) and d) a plurality of times; preferably with steps c), d) and e) promoting oxidation of one or more of the one or more species for treatment.
Abstract:
A method for increasing the quantity of dissolved oxygen in water includes addition of an oxidant to the water to increase the oxidation-reduction potential (ORP) of the water to between about 400 and 850 mV, followed by electrolysis to generate oxygen gas. The voltage applied to the electrolytic cells during electrolysis is less than 300 mV. The dissolved oxygen content of the water exiting the electrolytic cell is about 90% of saturation to super saturation.
Abstract:
A device prepares drinking water by electrolysis, belonging to the technical field of equipment for electrolysis of water. The device includes a water container, at least one pair of a cathode and an anode arranged within the water container, and an electrolysis power source used for supplying electricity to the cathode and the anode; a water-permeable membrane is arranged between the coupled cathode and anode, and the water-permeable membrane covers the anode, the range of the distance δ between the water-permeable membrane and the cathode being 0≦δ≦10 mm. The device, when electrolyzing water, can prepare water which has a low oxidation reduction potential, is rich in hydrogen and has a certain sterilization capability and is suitable for drinking.
Abstract:
The present disclosure provides a liquid treatment device, a liquid treatment method, and a plasma treatment liquid each capable of efficiently generating plasma and treating a liquid in a short time period. A liquid treatment device according to the present disclosure includes a first electrode, a second electrode disposed in a liquid to be treated, an insulator disposed around the first electrode with a space between the first electrode and the insulator, the insulator has an opening portion in a position in contact with the liquid to be treated, a power supply that applies voltage between the first electrode and the second electrode, and a supply device supplying a liquid to the space before the power source applies the voltage.
Abstract:
The present invention describes a method of treatment of at least one phase, solid and/or liquid, of a pumpable liquid flow, wherein the method comprises first filtration for separation of a liquid phase from the pumpable liquid flow, for obtaining one flow with increased content of solid phase and one flow with increased liquid level; and thereafter treatment of the flow with increased content of solid phase with high voltage pulses in a PEF-unit. Furthermore, the present invention is also related to a system for treatment of at least one phase, solid and/or liquid, of a pumpable liquid flow and the use of such a system, such as use for the treatment of at least one phase, solid and/or liquid, of a pumpable liquid foodstuff or a ballast water flow, or as a pre-treatment before digestion. Furthermore, the present invention also refers to a method of treatment of at least one phase, solid and/or liquid, of a pumpable liquid flow, wherein the method comprises hygienization of at least a part of the pumpable liquid flow in an IR-chamber; and treatment of at least a part of the pumpable liquid flow with high voltage pulses in a PEF-unit, wherein the hygienization in the IR-chamber may be performed before or after, or both before and after, the treatment with high voltage pulses in a PEF-unit.
Abstract:
The wastewater treatment apparatus of present invention has an electro-coagulation unit for removing contaminants with at least one anode and at least one cathode and an electro-oxidation unit for oxidizing contaminants with at least one anode and at least one cathode wherein oxidants are electrochemically generated. Based on the type of wastewater, the apparatus can have an electro-flotation unit between the electrocoagulation unit and the electro-oxidation unit. The apparatus also has an oxidant removal unit which can have a metal ion-liberating electrode for reacting with and removing residual oxidants. In some cases, portions of effluent from the oxidant removal unit can be recirculated to the electro-coagulation unit for increased efficiency.
Abstract:
Activated carbon filter (ACF) system and method are disclosed. An example of the ACF system includes a plurality of activated carbon electrodes, The ACF system includes at least one current spreader for each of the plurality of activated carbon electrodes. The ACF system includes an electrical connection to provide electrical power to the plurality of activated carbon electrodes via the at least one current spreader. The ACF system includes an inlet and an outlet configured to provide fluid through a flow path in the plurality of activated carbon electrodes to remove contaminant from the fluid. The ACE system actively deionizes and removes chemical, biological, and/or other particles from a fluid (e.g., tap water).
Abstract:
A dynamic rotational electrochemical reactor, system and process, for treatment of liquids and gases, can function as a rotational electrochemical-coagulation-reactor or a rotational electrochemical-oxidation reactor. An electrochemical reactor can include a reactor vessel with a fluid inlet and a fluid outlet; a reactor body, having an inlet turbine, such that the reactor body is rotatably attached to a drive shaft within the reactor vessel, the drive shaft connected to a plate-stack comprising electrode plates; and a voltage source connected to the electrodes, wherein the plate-stack includes angled channels for accepting the fluid, such that the fluid flows between sets of positive and negative electrode plates. The plate-stack can be connected with conductive studs and support studs, and can include pairs of intermediate electrode plates, mounted on top and bottom sides of an intermediate plastic support plate, and connected via an electric conductive spring.
Abstract:
A discharge unit includes an alternating high-voltage generator, a pair of electrodes in water, the pair being configured to receive a voltage from the high-voltage generator, and an insulating divider configured to separate the pair of electrodes from each other in the water, and having a small discharge hole defining a path of current to flow between the pair of electrodes. The voltage is applied to the pair of electrodes to generate an electric discharge in the discharge hole.