Abstract:
A composite flame retardant which exhibits excellent flame retardancy and high dispersibility in a resin and rarely experiences the deterioration of mechanical strength, and a resin composition comprising the composite flame retardant.The composite flame retardant contains (i) 100 parts by weight of magnesium hydroxide particles (A) having an average thickness of 10 to 100 nm, an average width of 2.4 μm or more and an average aspect ratio of 20 to 120 and (ii) 100 to 900 parts by weight of magnesium hydroxide particles (B) having an average width of 1 μm or less and an average aspect ratio of less than 20.
Abstract:
There are provided a multilayered resin molded body having high filler orientability and high mechanical strength, and a method for manufacturing the same. A multilayered resin molded body (1) comprising a plurality of laminated resin composition layers (11) comprising a thermoplastic resin (11a) and a filler (15) comprising a carbon material having a graphene structure, the filler (15) being dispersed in the thermoplastic resin (11a), wherein an angle formed by a longitudinal direction of each filler (15) and a direction that is an average of longitudinal directions of all fillers (15) is ±6° or less, and a method for manufacturing the multilayered resin molded body (1).
Abstract:
Thermoplastic molding compositions comprising A) from 29 to 97.5% by weight of a thermoplastic polyamide, B) from 1 to 20% by weight of melamine cyanurate, C) from 0.5 to 10% by weight of an organic phosphorus compound based on 9,10-dihydro-9-oxa-10-phosphaphenanthrene oxide (DOPO) as parent structure, D) from 1 to 50% by weight of a fibrous filler, the aspect ratio (L/D) of which is from 4 to 25, and the arithmetic average fiber length of which is from 40 to 250 μm, and E) from 0 to 50% by weight of further additives, where the total of the percentages by weight of components A) to E) is 100%.
Abstract:
Cured fluoroelastomer compositions containing a phyllosilicate of the formula Mgx Si7-x O(28-2x)/2-(y/2) (OH)y, wherein x=1 to 5 and y=0 to (28-2x), said phyllosilicate having an average length of at least 50 nm in at least one dimension and an aspect ratio >3:1 are disclosed.
Abstract translation:含有式Mg x Si 7-x O(28-2x)/ 2-(y / 2)(OH)y的页硅酸盐的固化含氟弹性体组合物,其中x = 1至5,y = 0至(28-2x),所述 公开了在至少一个维度和纵横比> 3:1的平均长度至少为50nm的页硅酸盐。
Abstract:
The present invention relates to reinforced polyamide molding compounds containing high-melting partially aromatic polyamides and flat glass fibers, in particular with a rectangular cross section, i.e., glass fibers with a noncircular cross-sectional area and a dimension ratio of the main cross-sectional axis to the secondary cross-sectional axis of 2 to 6, in particular 3 to 6, most especially preferably from 3.5 to 5.0. The present invention also relates to a method for manufacturing polyamide molding compounds and molded articles manufactured therefrom, i.e., in particular injection-molded parts. The inventive molded parts have a high transverse stiffness and transverse strength.
Abstract:
Powder compositions and articles and methods of forming articles from powder compositions are provided. In one embodiment the powder compositions include at least one polyester polymer powder and an amount of reinforcing particles having an aspect ratio of preferably at least about 5:1. In another embodiment the powder compositions include at least one medium-high melting temperature, aromatic and crystalline polyester polymer powder. In a preferred embodiment, the powder composition is capable of being formed, via a laser sintering process, into a three-dimensional article that exhibits one or more desirable mechanical properties in an elevated temperature environment.
Abstract:
The present invention provides a material for a molded resin as a material for a semiconductor light-emitting device that can yield a highly durable (light resistance and heat resistance) molded resin and can also improve the LED output through an excellent reflectivity. The present invention also provides an easily moldable material for a molded resin for a semiconductor light-emitting device. The material for a molded resin for a semiconductor light-emitting device is a resin composition comprising (A) a polyorganosiloxane, (B) a white pigment, and (C) a curing catalyst, wherein the white pigment (B) has the following characteristics (a) and (b); (a) an aspect ratio 1.2 or more and 4.0 or less, and (b) a primary particle diameter 0.1 μm or more and 2.0 μm or less.
Abstract:
The present disclosure is directed to a polyimide film. The film is composed of a polyimide and a sub-micron filler. The polyimide is derived from at least one aromatic dianhydride component selected from rigid rod dianhydride, non-rigid rod dianhydride and combinations thereof, and at least one aromatic diamine component selected from rigid rod diamine, non-rigid rod diamine and combinations thereof. The mole ratio of dianhydride to diamine is 48-52:52-48 and the ratio of X:Y is 20-80:80-20 where X is the mole percent of rigid rod dianhydride and rigid rod diamine, and Y is the mole percent of non-rigid rod dianhydride and non-rigid rod diamine. The sub-micron filler is less than 550 nanometers in at least one dimension; has an aspect ratio greater than 3:1; is less than the thickness of the film in all dimensions.
Abstract:
The assemblies of the present disclosure comprise an electrode, and a polyimide film. The polyimide film comprises a sub-micron filler and a polyimide. The polyimide is derived from at least one aromatic dianhydride component selected from rigid rod dianhydride, non-rigid rod dianhydride and combinations thereof, and at least one aromatic diamine component selected from rigid rod diamine, non-rigid rod diamine and combinations thereof. The mole ratio of dianhydride to diamine is 48-52:52-48 and the ratio of X:Y is 20-80:80-20 where X is the mole percent of rigid rod dianhydride and rigid rod diamine, and Y is the mole percent of non-rigid rod dianhydride and non-rigid rod diamine. The sub-micron filler is less than 550 nanometers in at least one dimension; has an aspect ratio greater than 3:1; is less than the thickness of the film in all dimensions.
Abstract:
In one embodiment the present invention provides for a high thermal conductivity highly structured resin that comprises a host highly structured resin matrix, and a high thermal conductivity filler 30. The high thermal conductivity fillers are from 1-1000 nm in length, and high thermal conductivity fillers have an aspect ratio of between 3-100. Particular highly structured highly structured resins include at least one of liquid crystal 40 polymers, interpenetrating networks, dendrimer type matrices, expanding polymers, ladder polymers, star polymers and structured organic-inorganic hybrids 60.