Abstract:
High-functionality highly or hyper-branched polycarbonates based on dialkyl or diaryl carbonates and on aliphatic diol or polyols, processes for preparing them, and their use for preparing printing inks.
Abstract:
Coating compositions include a crosslinker and a hyperbranched polymer and methods of producing coating compositions include combining a crosslinker and a hyperbranched polymer. Branching portions of the hyperbranched polymer include a linkage via a carbonyl group and at least two linkages via methylene groups. Branching compounds used in a process to form a hyperbranched polymer include at least one hydroxyl group and at least two oxirane groups. Resulting hyperbranched polymers can include dendrimers. Coating compositions having hyperbranched polymers and crosslinkers can be applied to a substrate and cured to form a crosslinked film.
Abstract:
The invention herein relates to a surface protective dendritic polymer composition and to the cross-linked surface protective coating formed therefrom.
Abstract:
An air drying waterborne resin composition is disclosed. Said resin composition comprises at least one amphiphlic air drying dendritic polymer, at least one non-amphiphilic air drying alkyd resin, at least one drier initiating and/or promoting autoxidation, and water, and optionally at least one anionic and/or nonionic surfactant, and/or at least one coalescent agent. Said at least one amphiphilic air drying dendritic polymer is built up from a polyhydric dendritic core polymer having terminal hydroxyl groups and at least one unsaturated carboxylic acid and at least one adduct, obtainable by addition of a monoalkylated polyethylene glycol to a dicarboxylic acid or anhydride and/or a diisocyanate, each bonded to at least one terminal hydroxyl group in said polyhydric dendritic core polymer.
Abstract:
An aqueous coating composition comprising a crosslinkable water-dispersible hyperbranched macromolecule(s) wherein the composition when drying has an open time of at least 20 minutes, a wet edge time of at least 10 minutes, a tack free time ≦15 hours, a dust free time ≦5 hours and an equilibrium viscosity of ≦5,000 Pa·s at any solids content when drying in the range of from 20 to 55% by weight using any shear rate in the range of from 9±0.5 to 90±5 s−1 and at 23±2° C.
Abstract:
The present invention provides novel compositions prepared from a first oligomer containing reactive functional groups capable of reaction at effective rates (at normal processing temperatures) with a co-reactive second component oligomer possessing functionality that is complementary to that of the first oligomer. The compositions may be used as coatings, including hard surface coatings, clear coatings, powder coatings and pattern coatings; as adhesives, including pressure sensitive adhesives and hot melt adhesives; as sealants; as optical coatings; as blown microfibers (BMF); as high refractive index optical materials; as barrier films; in microreplication; as low adhesion backsizes, (LABs) and as release coatings.
Abstract:
The present invention relates to substrates whose surface comprises a hyperbranched polymer which has urethane groups and/or urea groups, its amount being appropriate for modifying the properties on the surface. The invention further relates to a process for modifying the surface properties of substrates.
Abstract:
The present invention provides a chemically reactive surface able to covalently react with substances containing a hydroxyl group and/or amine group, comprising a solid surface having an activated dendrimer polyamine covalently bonded to said surface through a silane containing reagent, wherein the dendrimer polyamine can covalently bind the substance comprising a hydroxyl group and/or amino group. The present invention further provides a method for producing chemically reactive surfaces for binding moieties comprising a hydroxyl group and/or amine group, as well as kits comprising the chemically reactive surface of the invention.
Abstract:
A hyperbranched polyester polyol macromolecule, having a plurality of both embedded and exterior hydroxyl groups thereon, may be synthesized in a polymerization reaction having several steps. The hyperbranched polyol includes a central nucleus, a first chain extension, an intermediate substituent and a second chain extension. The central nucleus is a hydrocarbon structure with a plurality of oxygen atoms. The first chain extender is attached to the central nucleus and includes a carboxylic ester group and a plurality of hydroxyl groups. The intermediate substituent is attached to the first chain extender, and is a polyfunctional carboxylic acid or anhydride thereof. The preferred intermediate substituent is a cyclic compound. The second chain extension is attached to the intermediate substituent. The preferred second chain extension includes a glycidyl ester or epoxy. Methods of making a hyperbranched polyester polyol are also disclosed. Coating compositions in which the hyperbranched polyol is reacted with an aminoplast or with an isocyanate are also encompassed by the invention.
Abstract:
A binder for a coating composition is formed using a principal resin polyol, in combination with a hyper-branched polyol as a reactive intermediate, and at least one crosslinker. The principal resin polyol is at least one of a polyester polyol, a polyether polyol, and a polyacrylate. Hyper-branched polyester polyols may be used as reactive diluents, which will cross-link with isocyanates, isocyanurates, epoxides, anhydrides or their corresponding polyacids and/or aminoplasts to form a binder having particular properties, to help control the rheology of a coating system. The hyperbranched polyol, the principal resin polyol, or both may, optionally, include a carbamate functional group in the structure thereof. Coating compositions may be made using the binders together with additional components.