Abstract:
A synchronization device for an engine is provided that has a first active sensor and a second active sensor. The first active sensor is adapted to determine an angular position of a first shaft and the second active sensor is adapted to determine the angular position of a second shaft. The first active sensor and the second active sensor are adapted to provide information on the state of the angular position of the first shaft and the second shaft or the angular position of the first shaft and the phase position between the first shaft and the second shaft to the control device. In addition, the control device is adapted to provide a control signal for setting a given phase difference between the first and the second shaft.
Abstract:
A camshaft adjuster (1) for an internal combustion engine is provided, which includes a housing (21) and in which a relative angular position between a driving gear (22′) and an output element allocated to the camshaft is adjustable. In a first connection region (28), the housing is connected in a fixed manner to a support element (20) which is connected in a fixed fashion to a plastic toothed ring (19) in a radially outward direction in a second connection region (29). The outer surface of the carrier element (20) fits an inner surface of the toothed ring (19) in the second connection region (29). The carrier element (20) makes it possible to bridge the radial gap between the toothed ring (19) and the outer surface of the housing (21), and the second connection region accurately predefines a position of the toothed ring (19).
Abstract:
A valve timing control apparatus includes a driving side rotational member, a driven side rotational member arranged coaxially to the driving side rotational member, a fluid pressure chamber defined into an advanced angle chamber and a retarded angle chamber, a relative rotational phase adjusting mechanism controlling to selectively supply and drain a working fluid to and from the advanced angle chamber and the retarded angle chamber and adjusting a relative rotational phase of the driving side rotational member and the driven side rotational member, and a valve mechanism provided at the advanced angle chamber and establishing communication between an outside of the fluid pressure chamber and the advanced angle chamber in order to allow the driven side rotational member to advance when a fluctuated torque generated at a camshaft exceeds a torque applied to the driven side rotational member by the relative rotational phase adjusting mechanism.
Abstract:
A V-type engine includes a housing, a crankshaft, a counterbalance shaft, a first camshaft, and a second camshaft. The crankshaft, the counterbalance shaft, the first camshaft, and the second camshaft are rotatably supported by the housing. The crankshaft has a crankpin. In one embodiment, an imaginary plane perpendicular to the rotational axis of the crankshaft intersects each of the crankpin and the counterbalance shaft such that the crankshaft is operatively coupled with each of the counterbalance shaft and the first camshaft on one side of the imaginary plane, and the counterbalance shaft is operatively coupled with the second camshaft on an opposite side of the imaginary plane. The V-type engine may be included in a vehicle.
Abstract:
An engine assembly may include an engine structure, a crankshaft, a camshaft, a balance shaft, and first and second gears. The crankshaft, camshaft, and balance shaft may each be rotatably supported by the engine structure. The camshaft may be rotationally driven by the crankshaft and the first gear may be coupled to the camshaft. The second gear may be fixed for rotation with the balance shaft and meshingly engaged with and driven by the first gear.
Abstract:
A multi-utility camshaft cap for an internal combustion engine includes a base for attaching the camshaft cap to a cylinder head of an engine, with the base including not only semicircular bearing sections for mounting one or more camshafts to the cylinder head, but also oil control valves for controlling camshaft phasing, and a camshaft chain tensioner, with each component being mounted within a single, one-piece housing.
Abstract:
The present invention provides a cam shaft adjuster, which is designed for controlling a double cam shaft, which has a layered construction. The cam shaft adjuster is equipped with a first rotor-type output body and a second rotor-type output body which are arranged parallel to each other with their rotary vane body parts.
Abstract:
A variable valve device modulates movement of a valve for internal combustion engine by using a hydraulic pressure. The variable valve device is controlled by a control device via a control valve that modulates hydraulic pressure supply to and discharge from the variable valve device. The control device offsets an operating amount of the control valve by an offset component that shifts the operating amount outside a dead band. The control device sets the offset component smaller as the hydraulic medium temperature increases. The control device sets the offset component smaller when a controlling direction coincides with a biasing direction of a biasing member than that when the controlling direction opposes to the biasing direction. Further, the control device cancels the offset component when the actual valve movement is sufficiently close to the target valve movement.
Abstract:
A method for determining a wear value of a transmission element between a crankshaft and a camshaft of a reciprocating piston internal combustion engine, in particular a timing chain or toothed belt, is provided. The camshaft is driven by the transmission element via a drive part, for example a camshaft gearwheel. In each case, at least one measurement value for the phase position of the drive part relative to the crankshaft is determined at time intervals during which the crankshaft drives the camshaft, and the wear value is determined from the difference between the measurement values.
Abstract:
A twincam engine including a rocker arm configured to transmit rotation of a cam to reciprocate at least one of intake and exhaust valves, the rocker arm being pivotally attached to a cylinder head between a center axis of a valve stem of the intake valve and a center axis of a valve stem of the exhaust valve.