Abstract:
An object is to detect reflected light from an object accurately and to improve accuracy of capturing an image in a photosensor included in a display panel. In the display panel including a photosensor, when an image of an object is captured, light is emitted from a light source to the object and reflected light enters the photosensor. In the case where the incident light is too strong with respect to sensitivity of the photosensor, luminance of the light source is lowered. In the case where the incident light is too weak with respect to sensitivity of the photosensor, the luminance of the light source is increased.
Abstract:
There is provided a light receiving device including a polarization dispersing section that disperses a polarization direction of incoming light into a plurality of polarization directions, a light collecting section that has a metal pattern shaped like concentric circles on a surface thereof, where the light collecting section collects light that has passed through the polarization dispersing section, and a light receiving section that receives the light collected by the light collecting section. Also provided are a light receiving device manufacturing method and a light receiving method. The light collecting section may have a surface plasmon antenna that has the metal pattern shaped like the concentric circles on a surface thereof, and the light receiving section may receive the light collected toward a center of the concentric circles of the metal pattern of the light collecting section, through a hole at the center of the concentric circles, on a rear side of the light collecting section.
Abstract:
A light detector includes: a light receiving device having a central optical axis and first and second directions perpendicular thereto, the light receiving device detecting incident light; a first light shield provided on a light incident side of the light receiving device and disposed on one side in the first direction with respect to the light receiving device; and a second light shield provided on the light incident side of the light receiving device and disposed on the other side in the first direction with respect to the light receiving device, wherein the first and second light shields form a light incident slit over an angular range including the direction in which the central optical axis of the light receiving device extends, and the width of the slit increases as the angle with respect to the central optical axis of the light receiving device increases.
Abstract:
An optical sensing module is adapted to be assembled to a frame of a display device. The display device comprises a display module and the frame, and the display module has a display area and the frame surrounds the display area. The optical sensing module comprises a casing and an optical sensor. The casing is pivoted to the frame and the optical sensor is configured in the casing for sensing external light projecting on a side of the casing. The optical sensor is capable of sensing a brightness of the display area when the side of the casing faces the display area and sensing a brightness of an ambient light when the side of the casing doesn't face the display area.
Abstract:
The present invention relates to a luminaire comprising an array of LEDs emitting light of at least one color, and a control system for controlling the light output of the luminaire. The control system comprises photosensor array for detecting light output of the luminaire. An imaging unit is arranged in front of the photosensor array such that it maps an image of said array of LEDs on said photosensor array. The photosensor array is divided into subareas each detecting light output from a single one of the LEDs. The control system uses the output of the subareas for controlling the luminaire light output. Thus, it is possible to act on different LED light colors or the light output of individual LEDs without having to separate them in time by means of a time pulsing method.
Abstract:
A light guide mechanism for an illuminance sensor includes: a lighting window configured to pass through an external light; the illuminance sensor configured to detect an illuminance of the light passed through the lighting window; and a light-blocking part provided between the lighting window and the illuminance sensor and configured to block a light other than the light passed through the lighting window. The light-blocking part has an inner surface inclined with respect to a line perpendicular to a light-receiving surface of the illuminance sensor. A direction of inclination of the inner surface is such that the inner surface faces the light-receiving surface of the illuminance sensor.
Abstract:
A goniophotometer has a main rotating table, a sync-rotating table, a luminaire rotating table and light detecting tubes (4-1, 4-2). The main rotating table has a main rotating axis (1-2) and a main mirror (1-4) reflecting the light from a luminaire under test (5). The sync-rotating table has a sync-rotating axis (2-2) and a sync-mirror (2-4) located in the reflection path of the main mirror (1-4). The sync-rotating axis (2-2) is coincident with the main rotating axis (1-2). The luminaire rotating table has a luminaire rotating axis (3-2) which can drive the rotation of the luminaire under test (5). The luminaire rotating axis (3-2) is perpendicular to the main rotating axis (1-2). The light detecting tubes (4-1, 4-2) are arranged in the emergent light path to detect the luminous intensity of the luminaire under test (5) in different direction.
Abstract:
The present invention relates to a solid-state based light source, a corresponding circuitry and a method of emitting light, including one or more light source elements for generating light, a first sensor for receiving light emitted by the light source elements and ambient light and for generating a first sensor signal (S1) representing the received light, a second sensor for only receiving ambient light and for generating a second sensor signal (S2) representing the received ambient light. Moreover, the solid-state based light source comprises a control unit for receiving the first and the second sensor signals (S1, S2) and for generating control signals (Sc) for controlling the light source elements, based on the difference between the first and the second sensor signals (S1, S2), to compensate for the influence of the ambient light.
Abstract:
In a total luminous flux measurement apparatus according to an embodiment, a total luminous flux emitted by an object is calculated based on a result of measuring illuminances using a measuring unit when providing relative movement between the object and an integrating unit to expose a substantially entire light emitting surface of the object to an inner space of the integrating unit. Specifically, under conditions that the object is disposed to penetrate the integrating unit from one sample hole to the other sample hole, a luminous flux of a portion of the object within the inner space of the integrating unit is measured, then the integrating unit is moved relative to the object, and a luminous flux of a portion accordingly contained in the inner space of the integrating unit is measured.
Abstract:
An optical emission spectroscopic (OES) instrument includes a spectrometer, a processor and an adjustable mask controlled by the processor. The adjustable mask defines a portion of an analytical gap imaged by the spectrometer. The instrument automatically adjusts the size and position of an opening in the mask, so the spectrometer images an optimal portion of plasma formed in the analytical gap, thereby improving signal and noise characteristics of the instrument, without requiring tedious and time-consuming manual adjustment of the mask during manufacture or use.