Abstract:
An electron beam apparatus is provided having an electron emitting device which has a simple configuration, exhibits high electron emission efficiency, operates stably, and in which emitted electrons are effectively converged. The electron beam apparatus includes: an insulator having a notch on its surface; a gate positioned on the surface of the insulator; at least one cathode having a protruding portion protruding from an edge of the notch toward the gate, and positioned on the surface of the insulator so that the protruding portion is opposed to the gate; and an anode arranged to be opposed to the protruding portion via the gate, wherein the gate is formed on the surface of the insulator so that at least a part of a region opposed to the cathode is projected outward and recessed portions are provided in which ends of the gate are recessed and interpose the projected region.
Abstract:
A method for producing an electron-emitting device includes forming a first conductive film on a side surface of an insulation layer including the side surface and a top surface connected to the side surface; forming a second conductive film from the top surface to the side surface and on the first conductive film; and etching the second electrically conductive film.
Abstract:
An electron-emitting device manufacturing method includes a first step of forming a conductive film on an insulating layer having an upper surface and a side surface connected to the upper surface via a corner portion so as to extend from the side surface to the upper surface and cover at least a part of the corner portion, and a second step of etching the conductive film in a film thickness direction. At the first step, the conductive film is formed so that film density of the conductive film on the side surface of the insulating layer becomes the same as or higher than film density of the conductive film on the upper portion of the insulating film.
Abstract:
A method of manufacturing a field emission device having emitter shapes, comprise the steps of forming a first original plate having a major surface provided with emitter shapes, by cutting a surface portion of a base material, forming a first material layer on the major surface of the first original plate on which the emitter shapes are provided; separating the first material layer from the first original plate, thereby obtaining a second original plate having recesses onto which the emitter shapes on the first original plate are transferred, forming a second material layer on a major surface of the second original plate on which the recesses are provided; and separating the second material layer from the second original plate, thereby to obtain a substrate having projections portions onto which shapes of the recesses of the second original plate are transferred.
Abstract:
A Reflective Field Emission Display (FED) pixel element and system employing same are disclosed. In the FED system disclosed, each pixel element is composed of at least one emitter that is operable to emit electrons and at least one reflector that is operable to attract and reflect the emitted electrons onto a transparent anode layer that oppositely positioned with respect to the emitter and reflector and is operable to attract the reflected electrons. In one aspect of the invention, the emitter layer is shaped to bound the reflector layer forming an electrical boundary that focuses the reflected electron beam onto a phosphor layer interposed between the transparent layer. In another aspect of the invention, a high voltage and a corresponding high voltage phosphor is applied to the transparent anode layer. The use of high voltage and high voltage phosphor is advantageous as it causes the reflected electrons to be drawn deeper into the phosphor layer and, hence, reduces unwanted emissions back into the vacuum of the pixel element. In still another aspect of the invention, a plurality of phosphor layers are applied to the transparent layer to produce a color display as reflected electrons are attracted to the transparent layer.
Abstract:
A Reflective Field Emission Display (FED) pixel element and system employing same are disclosed. In the FED system disclosed, each pixel element is composed of at least one emitter that is operable to emit electrons and at least one reflector that is operable to attract and reflect the emitted electrons onto a transparent anode layer that oppositely positioned with respect to the emitter and reflector and is operable to attract the reflected electrons. In one aspect of the invention, the emitter layer is shaped to bound the reflector layer forming an electrical boundary that focuses the reflected electron beam onto a phosphor layer interposed between the transparent layer. In another aspect of the invention, a high voltage and a corresponding high voltage phosphor is applied to the transparent anode layer. The use of high voltage and high voltage phosphor is advantageous as it causes the reflected electrons to be drawn deeper into the phosphor layer and, hence, reduces unwanted emissions back into the vacuum of the pixel element. In still another aspect of the invention, a plurality of phosphor layers are applied to the transparent layer to produce a color display as reflected electrons are attracted to the transparent layer.
Abstract:
A Reflective Field Emission Display system, components and methods for fabricating the components. In the FED system, a plurality of reflective edge emission pixel elements are arranged in a matrix of N rows and M columns, the pixel elements contain an edge emitter that is operable to emit electrons and a reflector that is operable to extract and laterally reflect emitted electrons. A collector layer, laterally disposed from said reflector layer is operable to attract the reflected electrons. Deposited on the collector layer is a phosphor layer that emits a photon of a known wavelength when activated by an attracted electron. A transparent layer that is oppositely positioned with respect to the pixel elements is operable to attract reflected electrons and prevent reflected electrons from striking the phosphor layer. Color displays are further contemplated by incorporating individually controlled sub-pixel elements in each of the pixel elements. The phosphor layers emit photons having wavelengths in the red, green or blue color spectrum.
Abstract:
An electron emitter, such as for a display, has a substrate and regions of n-type material and p-type material on the substrate arranged such that there is an interface junction between the regions exposed directly to vacuum for the liberation of electrons. The p-type region may be a thin layer on top of the n-type region or the two regions may be layers on adjacent parts of the substrate with adjacent edges forming the interface junction. Alternatively, there many be multiple interface junctions formed by p-type particles or by both p-type and n-type particles. The particles may be deposited on the substrate by an ink-jet printing technique. The p-type material is preferably diamond, which may be activated to exhibit negative electron affinity.
Abstract:
A field emission display having element including a first electrode, and a second electrode laminated to the first electrode through an insulating layer. The first electrode has an opening; the second electrode has a hole of a planar shape corresponding to that of the opening at a position matched with the opening; and the insulating layer has a through-hole continuous to the opening and the hole. An upper edge portion of the hole is formed into a cross-sectional shape having an edge angle in a range of 80 to 100°, and at least part of the upper edge portion of the hole is exposed in the through-hole. In this element, electrons are emitted from the second electrode through the upper edge portion of the hole exposed in the through-hole by applying a specific voltage between the first electrode and the second electrode. With this configuration, a distance between the gate electrode and a field emission portion of the cathode electrode can be accurately controlled with a simple structure. To enhance an emission efficiency of electrons, a second gate electrode may be provided on the lower side of the cathode electrode through an insulating layer.
Abstract:
A field emission display having element including a first electrode, and a second electrode laminated to the first electrode through an insulating layer. The first electrode has an opening; the second electrode has a hole of a planar shape corresponding to that of the opening at a position matched with the opening; and the insulating layer has a through-hole continuous to the opening and the hole. An upper edge portion of the hole is formed into a cross-sectional shape having an edge angle in a range of 80 to 100.degree., and at least part of the upper edge portion of the hole is exposed in the through-hole. In this element, electrons are emitted from the second electrode through the upper edge portion of the hole exposed in the through-hole by applying a specific voltage between the first electrode and the second electrode. With this configuration, a distance between the gate electrode and a field emission portion of the cathode electrode can be accurately controlled with a simple structure. To enhance an emission efficiency of electrons, a second gate electrode may be provided on the lower side of the cathode electrode through an insulating layer.