Abstract:
A modular x-ray source for an imaging system includes an electron source mounting plate, two or more electron sources each mounted on and electrically coupled to the electron source mounting plate, and a target block positioned proximately to the two or more electron sources. The source includes two or more targets mounted on and electrically coupled to the target block, each target positioned opposite a respective one of the two or more electron sources to receive a respective beam of electrons therefrom.
Abstract:
A multiple spot x-ray generator is provided that includes a plurality of electron generators. Each electron generator includes an emitter element to emit an electron beam, a meshed grid adjacent each emitter element to enhance an electric field at a surface of the emitter element, and a focusing element positioned to receive the electron beam from each of the emitter elements and focus the electron beam to form a focal spot on a shielded target anode, the shielded target anode structure producing an array of x-ray focal spots when impinged by electron beams generated by the plurality of electron generators. The plurality of electron generators are arranged to form an electron generator matrix that includes activation connections electrically connected to the plurality of electron generators, wherein each electron generator is connected to a pair of the activation connections to receive an electric potential therefrom.
Abstract:
A radiation source which can emit X-ray flux, UV-C flux and other forms of radiation uses electron beam current from a cathode array formed on the window through which the radiation will exit the source. The source can be made in formats which are compact or flat compared with prior art radiation sources. X-ray, UV-C and other radiative flux produced by the source can be used for such purposes as radiation imaging, sterilization, decontamination of biohazards, UV curing or photolithography.
Abstract:
Systems and methods for x-ray imaging and scanning of objects are disclosed. According to one aspect, the subject matter described herein can include providing an x-ray source configured to generate a plurality of individually-controllable x-ray beams, positioning an object to be imaged in a path for intercepting at least one of the x-ray beams, activating the x-ray source, detecting intensities of the emitted x-ray beams, and generating imaging data based on the intensities for constructing an image of the object.
Abstract:
In one embodiment, an X ray tube assembly is provided. The X ray tube assembly comprises an evacuated envelope, an anode disposed at a first end of the evacuated envelope and a cathode assembly disposed at a second end of the evacuated envelope. The cathode assembly comprises a cathode filament and a cathode cup defining a plurality of electrically isolated deflection electrodes. Further, the cathode cup comprises at least two portions, a first portion comprising an electrically conductive material and a second portion comprising an electrically insulating material. In another embodiment, a method of manufacturing the X ray tube assembly is provided.
Abstract:
The invention relates to an X-ray tube (11) with a cathode that emits electrons (e−) into an interior chamber (40) that is under vacuum, and with a target (31, 32), configured as an anode, for generating high-dose X-radiation (γ), the cathode comprising at least one cold cathode (21, 22, 23) based on an electron (e−) emitting material having a field-enhancing structure (70). The invention especially relates to an X-ray tube (11) having a cold cathode (21, 22, 23) that comprises at least one support layer (201) for holding the electron (e−) emitting material, the emission area of the cold cathode (21, 22, 23) being defined by the shape of the support layer (201).
Abstract:
An x-ray generating device includes at least one field-emission cold cathode having a substrate and incorporating nanostructure-containing material including carbon nanotubes. The device further includes at least one anode target. Associated methods are also described.
Abstract:
Systems and methods are provided for reconstructing projection data that is mathematically complete or sufficient acquired using a computed tomography (CT) system. In one embodiment, a set of projection data representative of a sampled portion of a cylindrical surface is provided. The set of projection data is reconstructed using a suitable cone-beam reconstruction algorithm. In another embodiment, two or more sets of spatially interleaved helical projection data are processed using helical interpolation. The helically interpolated set of projection data is reconstructed using a two-dimensional axial reconstruction algorithm or a three-dimensional reconstruction algorithm.
Abstract:
A cathode cup is provided. The cathode cup includes one or more pockets; and one or more filaments associated with the one or more pockets. A same number of pockets as filaments are present. Each pocket is associated with exactly one filament and is configured to have a length that is tailored to a length of the filament. The cathode cup can be used in an X-ray system having an anode and a cathode. A method of electron beam shaping is provided. The method includes the following steps. A computer-simulated model of a cathode cup is created. The model is used to predict focal spot dimensions. The predicted focal spot dimensions are compared to desired focal spot dimensions. The steps of creating, using and comparing are repeated until the predicted focal spot dimensions match the desired focal spot dimensions. A cathode cup is created based on the computer-simulated model.
Abstract:
An electron emitter assembly and a method for generating electron beams are provided. The electron emitter assembly includes a light source configured to emit light. The electron emitter assembly further includes a photo-responsive device operably coupled to an electron emitter device. The photo-responsive device induces the electron emitter device to emit electrons in response to receiving the light. Finally, the electron emitter assembly includes an anode receiving the emitted electrons from the electron emitter device.