Abstract:
An RF power resistor includes: a lossy layer; and a dielectric layer. The lossy layer is shaped and/or sized as a transmission line. The lossy layer is made of a lossy material. The dielectric layer is made of a dielectric material. The lossy layer and the dielectric material are located to be adjacent to each other and in contact with each other.
Abstract:
The present invention provides a security assembly for protecting a device includes first and second security wraps fitted to the device. The first security wrap covers a first area of the device. The second security wrap partially overlaps the first security wrap and covers a second area of the device. Each of the first and second security wraps has a security screen having first and second screen terminals and a conductive track extending between the first and second screen terminals. A conductive structure is disposed in an overlapping area between the first and second security wraps and coupled to the second screen terminal of the first security screen and to the first screen terminal of the second security screen.
Abstract:
In accordance with certain embodiments, an illumination system comprising a plurality of power strings features elements facilitating compensation for failure of one or more light-emitting elements connected along each power string.
Abstract:
According to an example embodiment, the multilayer stretchable cable includes a multilayer stretchable film and a plurality of conductive lines in the stretchable film. The conductive lines are in at least two different layers of the multilayer stretchable film in a thickness direction of the stretchable film, at least one conductive line is a signal line and at least one other conductive line in a layer adjacent to the signal line is a ground line. The signal line and the ground line are in zigzag patterns and are parallel to a width direction of the multilayer stretchable film.
Abstract:
An apparatus and method wherein the apparatus comprises includes a deformable substrate; a conductive portion; and at least one support configured to couple the conductive portion to the deformable substrate so that the conductive portion is spaced from the deformable substrate.
Abstract:
A method for forming a flexible sheet of LED light emitters includes forming a micro lens sheet having a plurality of micro lenses, forming a phosphor sheet including a wave-length converting material, forming a flexible circuit sheet, forming a ceramic substrate sheet including a plurality of LED light emitters, and forming a support substrate including a thermally conductive material. The method also includes attaching the above sheets to form a stack including, from top to bottom, the micro lens sheet, the phosphor sheet, the flexible circuit sheet, the ceramic substrate sheet, and the support substrate.
Abstract:
Techniques are provided for electrically connecting components on a printed circuit board (PCB), semiconductor chip package, or other electronic device. More specifically, a first component, configured to generate a differential signal, is disposed on the PCB, while a second component, configured to receive the differential signal from the first component, is also disposed on the PCB. A differential conductor pair comprising first and second parallel conductors extends along a path between the first and second components. The path of the differential conductor pair comprises at least one turn that causes a change in direction of the first and second conductors. The first conductor comprises at least one localized skew compensation bend disposed at the turn such that, at the end of the turn, the first and second conductors have substantially the same length with respect to the first component.
Abstract:
An interconnection line device includes an insulating layer for electrical insulation; an external connection terminal which is formed on one surface of the insulating layer: an interconnection line which is formed on another surface of the insulating layer and whose one end portion area is connected to a predetermined signal line; and a connection portion which is arranged so as to penetrate through the insulating layer and connects another end portion area of the interconnection line to the external connection terminal.
Abstract:
The present disclosure relates to a telecommunications jack including a housing having a port for receiving a plug. The jack also includes a plurality of contact springs adapted to make electrical contact with the plug when the plug is inserted into the port of the housing, and a plurality of wire termination contacts for terminating wires to the jack. The jack further includes a circuit board that electrically connects the contact springs to the wire termination contacts. The circuit board includes a multi-zone crosstalk compensation arrangement for reducing crosstalk at the jack.
Abstract:
A current sensor includes a printed circuit and current lines. The printed circuit comprises a stack, along a vertical direction, of metallization layers mechanically separated by electrically insulating layers, and a measurement or excitation coil wound around a vertical winding axis. The coil is formed by conductive tracks made in at least one metallization layer. One or more current lines are positioned in a plane parallel to the layers and are configured to be supplied with currents to be measured. The coil comprises turns formed by conductive tracks, made in respective metallization layers, electrically connected to one another by pads passing through at least one of the electrically insulating layers, to form a coil that extends along the vertical winding axis.