Abstract:
An apparatus for electron beam irradiation of objects comprises an electron beam shaper 1 providing a ribbon-shaped beam 7 and a deflecting electromagnet 8 with a frame-type magnetic circuit 9 to direct the beam 7 onto an irradiated object 6 substantially at an angle of 90.degree.. The deflecting electromagnet 8 has two poles 10, 11 extending over the width of the irradiated object 6 and two windings 12, 13 embracing the poles 10, 11 and connected to a direct current source 14, the deflecting electromagnet 8 being arranged so that the trajectories of the electrons within the area from the shaper 1 to the deflecting electromagnet 8 are inclined to the frame of its magnetic circuit 9.
Abstract:
A flexible ion generator device that includes a dielectric layer having a first end, a second end, a first side, a second side, a top side, and a bottom side, at least one trace positioned on the dielectric layer and having a plurality of emitters engaged to the at least one trace. A plurality of lights disposed on the dielectric layer.
Abstract:
A flexible ion generator device that includes a dielectric layer having a first end, a second end, a first side, a second side, a top side, and a bottom side, at least one trace positioned on the dielectric layer and having a plurality of emitters engaged to the at least one trace. A plurality of lights disposed on the dielectric layer.
Abstract:
The present invention provides methods and systems for the flexible ion generation device includes at least one dielectric layer, at least one trace having a first end and a second end, the at least one trace is engaged to the at least one dielectric layer, and at least one emitter engaged to the trace for emitting ions.
Abstract:
The present invention provides methods and systems for the flexible ion generation device includes at least one dielectric layer, at least one trace having a first end and a second end, the at least one trace is engaged to the at least one dielectric layer, and at least one emitter engaged to the trace for emitting ions.
Abstract:
An apparatus for generating X-ray may include: a plasma chamber; a magnet unit for applying a magnetic field to the plasma chamber, the magnet unit configured to allow the control of the magnitude of the minimum magnetic field in the plasma chamber without change in structure; a microwave generator for applying microwaves to the plasma chamber; a reaction gas injected into the plasma chamber for generating X-ray through electron cyclotron resonance by the magnetic field and the microwaves; a variable guide for focusing the generated X-ray; and a variable extractor for outputting the focused X-ray from the plasma chamber.
Abstract:
An electron emitting element of the present invention includes an electron acceleration layer sandwiched between an electrode substrate and a thin-film electrode, and the electron acceleration layer includes a fine particle layer containing insulating fine particles and a basic dispersant. This makes it possible to provide an electron emitting element which does not cause insulation breakdown in an insulating layer and which can be produced at a low cost.
Abstract:
A particle beam system having a beam source for generating a particle beam and a vacuum air bearing. The beam source is mounted to a first side of the vacuum air bearing, with an active side of the vacuum air bearing disposed on an opposing second side of the vacuum air bearing. The active side is adapted to receive and retain a substrate. A beam port is formed completely through the vacuum air bearing from the first side to the second side. Means are provided for moving the substrate across the second side of the vacuum air bearing and positioning the substrate under the beam port. Means are also provided for sealing an interior of the beam source from exposure to atmosphere through the beam port.
Abstract:
An irradiation apparatus for irradiating by scanning a target volume according to a predetermined dose profile with a scanning beam of charged particles forming an irradiation spot on said target volume, said apparatus comprising: a beam generating device, a reference generator for computing, from said predetermined dose profile, through a dynamic inverse control strategy, the time evolution of commanded variables, these variables being the beam current I(t), the spot position settings x(t),y(t) and the scanning speed settings vx(t), vy(t), a monitor device having means for detecting at each time (t), the actual spot position as a measured position defined by the values xm(t),ym(t) on the target volume, characterised in that said irradiation apparatus further comprises means for determining the differences ex(t), ey(t) between the measured values xm(t), ym(t) and the spot position settings x(t) and y(t), and means for applying a correction to the scanning speed settings vx(t) and vy(t) depending on said differences ex(t), ey(t). The present invention is also related to a monitor for determining beam position in real-time.
Abstract:
A sealed electron beam source (12) for an imaging tube (16) is provided. The beam source (12) includes a source housing (50) with a source window (54) having a first voltage potential and a source electrode (52) having a second voltage potential. The source electrode (52) generates electrons and emits the electrons through the source window (54) to a target (32) that is external to the source housing (50). A method of supplying and directing electrons on the target (32) within the imaging tube (16) is also provided. The method includes forming the source housing (50) over the source electrode (52) and sealing the source housing (50). The electrons are generated and emitted from the source electrode (52) and directed through the source window (54) to the target (32).