Abstract:
The present invention is directed to topical compositions, comprising isoflavone nanoparticle compositions. The isoflavone nanoparticle compositions contain isoflavone in the form of nanoparticles and preferably a carrier. In the topical compositions recrystallization of the isoflavone to bigger particles is avoided.
Abstract:
The invention provides a yeast strain and a method for making the same. The method has the step of replacing the regulation region upstream of the hsp104 gene in the genome of the yeast, so as to accelerate and prolong the expression span of hsp104 gene and enhance the capability of the yeast to ferment and produce ethanol in a high-temperature environment. The yeast is capable of fermenting glucose at a temperature higher than 42° C. to produce ethanol, or biomass ethanol, wherein the ethanol production ratio based on fermentation of glucose is higher than 97%. Being able to synchronize the degradation/hydrolysis stage and fermentation stage of biomass ethanol producing process, the yeast in accordance with the present invention is able to lower the production cost of biomass ethanol and further raise the productivity with its high ethanol production ratio.
Abstract:
An electronic device may be provided with a display having substrate layers such as a glass color filter layer substrate and a glass thin-film-transistor layer substrate. Display layers such as first and second layers of polymer, a liquid crystal layer interposed between the layers of polymer, color filter elements, and thin-film-transistor circuitry may be formed between the color filter layer substrate and the thin-film-transistor layer substrate. Flexible inactive portions of the display layers may protrude outward from between the color filter layer substrate and the thin-film-transistor substrate. Touch sensor circuitry may be formed from a flexible polymer substrate. The touch sensor circuitry may include conductive touch sensor lines and capacitive electrodes. Each conductive line may be coupled to only a single end of a respective one of the capacitive electrodes.
Abstract:
A light source unit is disclosed for arranging on a plane and emitting a light beam oblique to the plane. The light source unit includes an illuminant element and a transparent encapsulator. The illuminant element has an upper surface and a lower surface both parallel to the plane. The transparent encapsulator physically contacts with the illuminant element and at least covers the upper surface of the illuminant element. The transparent encapsulator has an oblique surface above the upper surface and oblique to the upper surface. In addition, an optical inputting module having the light source unit mentioned above is disclosed.
Abstract:
A femtocell Base Station (femto-BS), a network resource allocation method, and a non-transitory tangible machine-readable medium thereof are provided. There are a plurality of available network resource units. The femto-BS determines an expected value that is related to the available network resource units being used by the femto-BS and its neighboring femto-BSs without having interferences. The expected value is related to a number of the available network resource units and a number of the neighboring femto-BSs. Based on the expected value, the femto-BS calculates a plurality of strategy probability values that are related to different numbers of the available network resource units used by the femto-BS. The femto-BS calculates an assigned number according to the strategy probability values. Among the available network resource units, the femto-BS can use the assigned number of them.
Abstract:
The present disclosure generally provides for a variety of multi-domain pixel configurations that may be implemented in the unit pixels of an LCD display device, such as a fringe field switching LCD display panel. An LCD display device utilizing one or more of the presently disclosed techniques disclosed herein may exhibit improved display properties, such as viewing angle, color shift, and transmittance properties, relative to those exhibited by conventional multi-domain designs.
Abstract:
A wafer edge exposure module connected to a semiconductor wafer track system. The wafer edge exposure module includes a wafer spin device, an optical system, a scanner interface module, and a controller. The wafer spin device supports a wafer for processing. The optical system directs exposure light on a respective edge portion of the wafer simultaneously to create a dummy track on the edge of the wafer. The scanner interface module sends and/or receives dummy edge exposure information from a scanner via a computer network. The controller receives the dummy edge exposure information from the scanner interface module and uses the exposure information to control the optical system.
Abstract:
An active device array substrate is provided. First, a substrate having a display area and a sensing area is provided. Then, a first patterned conductor layer is disposed on the display area of the substrate. A gate insulator is disposed on the substrate. A patterned semiconductor layer, a second patterned conductor layer and a patterned photosensitive dielectric layer are disposed on the gate insulator, wherein the second patterned conductor layer includes a source electrode, a drain electrode and a lower electrode, the patterned photosensitive dielectric layer covering the second patterned conductor layer includes an interface protection layer disposed on the source electrode and the drain electrode and a photo-sensing layer disposed on the lower electrode. A passivation layer is then disposed on the substrate. After that, a third patterned conductor layer including a pixel electrode and an upper electrode is disposed on the passivation layer.
Abstract:
A liquid crystal display (LCD) is provided having a discontinuous electrode. In certain embodiments, finger- or slit-like extensions of the discontinuous electrode may be shaped to reduce or eliminate disclinations of liquid crystals within a pixel aperture used to transmit light, where the liquid crystals are oriented in response to an electric field generated using the discontinuous electrode. Similarly, in other embodiments, the different portions of the discontinuous electrode may be lengthened to extend under an opaque mask or may not be linked at one end to reduce or eliminate the disclinations.