Abstract:
A wafer assembly includes a process wafer and a carrier wafer. Integrated circuits are formed on the process wafer. The carrier wafer is bonded to the process wafer. The carrier wafer has at least one alignment mark.
Abstract:
A method and system to improve scanner throughput is provided. An image from a reticle is projected onto a substrate using a continuous linear scanning procedure in which an entire column of die or cells of die is scanned continuously, i.e. without stepping to a different location. Each scan includes translating a substrate with respect to a fixed beam. While the substrate is translated, the reticle is also translated. When a first die or cell of die is projected onto the substrate, the reticle translates along a direction opposite the scan direction and as the scan continues along the same direction, the reticle then translates in the opposite direction of the substrate thereby forming an inverted pattern on the next die or cell. The time associated with exposing the substrate is minimized as the stepping operation only occurs after a complete column of cells is scanned.
Abstract:
A method for fabricating an integrated circuit device is disclosed. The method is a lithography patterning method that can include providing a substrate; forming a protective layer over the substrate; forming a conductive layer over the protective layer; forming a resist layer over the conductive layer; and exposing and developing the resist layer.
Abstract:
A method and apparatus provide for simultaneously moving multiple semiconductor wafers in opposite directions while simultaneously performing processing operations on each of the wafers. The semiconductor wafers are orientated in coplanar fashion and are disposed on stages that simultaneously translate in opposite directions to produce a net system momentum of zero. The die of the respective semiconductor wafers are processed in the same spatial sequence with respect to a global alignment feature of the semiconductor wafer. A balance mass is not needed to counteract the motion of a stage because the opposite motions of the respective stages cancel each other.
Abstract:
A wafer edge exposure unit comprises a chuck for supporting a wafer. The chuck is rotatable about a central axis. A plurality of light sources are positioned or movably positionable with a common radial distance from the axis of the rotatable chuck, each light source configured to direct exposure light on a respective edge portion of the wafer simultaneously.
Abstract:
A method including: providing collinear first and second lines in a mask layer over a substrate, the first line having at one end a first line end and having a first line body adjacent the first line end, and the second line having at one end a second line end and having a second line body adjacent the second line end; measuring line widths of the first line body and the second line body; locating effective line end positions for the first line end based on the line width of the first line body and for the second line end based on the line width of the second line body; and measuring a distance between the effective line end positions, as an effective line end spacing.
Abstract:
An apparatus includes a wafer stage configured to secure a wafer; and a cleaning module including a tank adjacent to the wafer stage, and is positioned outside the region occupied by the wafer. The cleaning module is configured to receive de-ionized (DI) water into the tank and extract the DI water out of the tank. The tank is configured to hold DI water with a top surface of the DI water substantially level with a top surface of the wafer.
Abstract:
A wafer chuck is cleaned using a cleaning cap to remove processing residue and particulate matter. The cleaning cap is configured to overlie and align with the wafer chuck and includes a base and a first roller connected to the base and having wound therearound a cleaning cloth. The cleaning cap further includes a second roller connected to the base and having attached thereto a free end of the cleaning cloth. During use, the cleaning cloth winds upon the second roller from the first roller when the second roller rotates about its axis. The cleaning cap can be positioned relative the wafer chuck by way of a manipulator to ensure the cleaning cloth contacts the wafer chuck with sufficient force. The cleaning cloth rubs the wafer chuck with both translational motion and rotational motion.
Abstract:
One embodiment relates to a method for semiconductor workpiece processing. In this method, a baseline tool induced shift (TIS) is measured by performing a baseline number of TIS measurements on a first semiconductor workpiece. After the baseline TIS has been determined, the method determines a subsequent TIS based on a subsequent number of TIS measurements taken on a first subsequent semiconductor workpiece. The subsequent number of TIS measurements is less than the baseline number of TIS measurements.
Abstract:
A lithography apparatus generates a tunable magnetic field to facilitate processing of photoresist. The lithography apparatus includes a chamber and a substrate stage in the chamber operable to hold a substrate. A magnetic module provides a magnetic field to the substrate on the substrate stage. The magnetic module is configured to provide the magnetic field in a tunable and alternating configuration with respect to its magnitude and frequency. The magnetic field is provided to have a gradient in magnitude along a Z-axis that is perpendicular to the substrate stage to cause magnetically-charged particles disposed over the substrate stage to move up and down along the Z-axis. The lithography apparatus also includes a radiation energy source and an objective lens configured to receive radiation energy from the radiation energy source and direct the radiation energy toward the substrate positioned on the substrate stage.