Abstract:
Methods and precursors for forming silicon nitride films are provided. In some embodiments, silicon nitride can be deposited by atomic layer deposition (ALD), such as plasma enhanced ALD. In some embodiments, deposited silicon nitride can be treated with a plasma treatment. The plasma treatment can be a nitrogen plasma treatment. In some embodiments the silicon precursors for depositing the silicon nitride comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%). In some embodiments, a method for depositing silicon nitride films comprises a multi-step plasma treatment.
Abstract:
Methods and precursors for depositing silicon nitride films by atomic layer deposition (ALD) are provided. In some embodiments the silicon precursors comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%).
Abstract:
Methods and precursors for depositing silicon nitride films by atomic layer deposition (ALD) are provided. In some embodiments the silicon precursors comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%).
Abstract:
Atomic layer deposition (ALD) processes for forming Group VA element containing thin films, such as Sb, Sb—Te, Ge—Sb and Ge—Sb—Te thin films are provided, along with related compositions and structures. Sb precursors of the formula Sb(SiR1R2R3)3 are preferably used, wherein R1, R2, and R3 are alkyl groups. As, Bi and P precursors are also described. Methods are also provided for synthesizing these Sb precursors. Methods are also provided for using the Sb thin films in phase change memory devices.
Abstract:
A process for depositing a silicon carbon nitride film on a substrate can include a plurality of complete deposition cycles, each complete deposition cycle having a SiN sub-cycle and a SiCN sub-cycle. The SiN sub-cycle can include alternately and sequentially contacting the substrate with a silicon precursor and a SiN sub-cycle nitrogen precursor. The SiCN sub-cycle can include alternately and sequentially contacting the substrate with carbon-containing precursor and a SiCN sub-cycle nitrogen precursor. The SiN sub-cycle and the SiCN sub-cycle can include atomic layer deposition (ALD). The process for depositing the silicon carbon nitride film can include a plasma treatment. The plasma treatment can follow a completed plurality of complete deposition cycles.
Abstract:
Methods and precursors for depositing silicon nitride films by atomic layer deposition (ALD) are provided. In some embodiments the silicon precursors comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%).
Abstract:
Methods for manufacturing a structure comprising a substrate. The substrate comprises plurality of recesses. The recesses are at least partially filled with a gap filling fluid. The gap filling fluid comprises boron, nitrogen, and hydrogen. The gap filling fluid can be formed by introducing a precursor into the reaction chamber and introducing a co-reactant into the reaction chamber to form a gap filling fluid that at least partially fills the gap.
Abstract:
There is provided a method of filling one or more recesses by providing the substrate in a reaction chamber and introducing a first reactant to the substrate with a first dose, introducing a second reactant to the substrate with a second dose, wherein the first and the second doses overlap in an overlap area where the first and second reactants react and leave an initially substantially unreacted area where the first and the second areas do not overlap; introducing a third reactant to the substrate with a third dose, the third reactant reacting with the first or second reactant to form deposited material; and etching the deposited material. An apparatus for filling a recess is also disclosed.
Abstract:
The current disclosure relates to methods of depositing silicon-containing material on a substrate comprising a gap, wherein the method comprises providing the substrate in a reaction chamber and depositing a carbon-containing inhibition layer on the substrate, and depositing silicon-containing material on the substrate. Depositing the inhibition layer comprises supplying a carbon precursor comprising carbon in the reaction chamber and supplying first plasma in the reaction chamber to form a first reactive species from the carbon precursor for forming the inhibition layer on the substrate. The inhibition layer is deposited preferentially in the vicinity of the top of the gap. The disclosure further relates to methods of forming a structure, methods of manufacturing a device and to a semiconductor processing apparatus.
Abstract:
Methods and related systems for filling a gap feature comprised in a substrate are disclosed. The methods comprise a step of providing a substrate comprising one or more gap features into a reaction chamber. The one or more gap features comprise an upper part comprising an upper surface and a lower part comprising a lower surface. The methods further comprise a step of subjecting the substrate to a plasma treatment. Thus, the upper surface is inhibited while leaving the lower surface substantially unaffected. Then, the methods comprise a step of selectively depositing a silicon-containing material on the lower surface.