Abstract:
Processes are provided herein for deposition of organic films. Organic films can be deposited, including selective deposition on one surface of a substrate relative to a second surface of the substrate. For example, polymer films may be selectively deposited on a first metallic surface relative to a second dielectric surface. Selectivity, as measured by relative thicknesses on the different layers, of above about 50% or even about 90% is achieved. The selectively deposited organic film may be subjected to an etch process to render the process completely selective. Processes are also provided for particular organic film materials, independent of selectivity.
Abstract:
Processes are provided herein for deposition of organic films. Organic films can be deposited, including selective deposition on one surface of a substrate relative to a second surface of the substrate. For example, polymer films may be selectively deposited on a first metallic surface relative to a second dielectric surface. Selectivity, as measured by relative thicknesses on the different layers, of above about 50% or even about 90% is achieved. The selectively deposited organic film may be subjected to an etch process to render the process completely selective. Processes are also provided for particular organic film materials, independent of selectivity.
Abstract:
A process is provided for depositing a substantially amorphous titanium oxynitride thin film that can be used, for example, in integrated circuit fabrication, such as in forming spacers in a pitch multiplication process. The process comprises contacting the substrate with a titanium reactant and removing excess titanium reactant and reaction byproducts, if any. The substrate is then contacted with a second reactant which comprises reactive species generated by plasma, wherein one of the reactive species comprises nitrogen. The second reactant and reaction byproducts, if any, are removed. The contacting and removing steps are repeated until a titanium oxynitride thin film of desired thickness has been formed.
Abstract:
Methods for depositing silicon oxycarbonitride (SiOCN) thin films on a substrate in a reaction space are provided. The methods can include at least one plasma enhanced atomic layer deposition (PEALD) cycle including alternately and sequentially contacting the substrate with a silicon precursor and a second reactant that does not include oxygen. In some embodiments the methods allow for the deposition of SiOCN films having improved acid-based wet etch resistance.
Abstract:
Methods for depositing silicon oxycarbide (SiOC) thin films on a substrate in a reaction space are provided. The methods can include at least one plasma enhanced atomic layer deposition (PEALD) cycle including alternately and sequentially contacting the substrate with a silicon precursor that does not comprise nitrogen and a second reactant that does not include oxygen. In some embodiments the methods allow for the deposition of SiOC films having improved acid-based wet etch resistance.
Abstract:
Methods for depositing silicon oxycarbonitride (SiOCN) thin films on a substrate in a reaction space are provided. The methods can include at least one plasma enhanced atomic layer deposition (PEALD) cycle including alternately and sequentially contacting the substrate with a silicon precursor and a second reactant that does not include oxygen. In some embodiments the methods allow for the deposition of SiOCN films having improved acid-based wet etch resistance.
Abstract:
Methods and apparatus for vapor deposition of an organic film are configured to vaporize an organic reactant at a first temperature, transport the vapor to a reaction chamber housing a substrate, and maintain the substrate at a lower temperature than the vaporization temperature. Alternating contact of the substrate with the organic reactant and a second reactant in a sequential deposition sequence can result in bottom-up filling of voids and trenches with organic film in a manner otherwise difficult to achieve. Deposition reactors conducive to depositing organic films are provided.
Abstract:
A process is provided for depositing a substantially amorphous titanium oxynitride thin film that can be used, for example, in integrated circuit fabrication, such as in forming spacers in a pitch multiplication process. The process comprises contacting the substrate with a titanium reactant and removing excess titanium reactant and reaction byproducts, if any. The substrate is then contacted with a second reactant which comprises reactive species generated by plasma, wherein one of the reactive species comprises nitrogen. The second reactant and reaction byproducts, if any, are removed. The contacting and removing steps are repeated until a titanium oxynitride thin film of desired thickness has been formed.
Abstract:
Methods are provided for selectively depositing a material on a first surface of a substrate relative to a second, different surface of the substrate. The selectively deposited material can be, for example, a metal, metal oxide, or dielectric material.
Abstract:
Methods and apparatus for vapor deposition of an organic film are configured to vaporize an organic reactant at a first temperature, transport the vapor to a reaction chamber housing a substrate, and maintain the substrate at a lower temperature than the vaporization temperature. Alternating contact of the substrate with the organic reactant and a second reactant in a sequential deposition sequence can result in bottom-up filling of voids and trenches with organic film in a manner otherwise difficult to achieve.