Abstract:
Methods for forming anisotropic features for high aspect ratio application in etch process are provided in the present invention. The methods described herein advantageously facilitates profile and dimension control of features with high aspect ratios through a sidewall passivation management scheme. In one embodiment, sidewall passivations are managed by selectively forming an oxidation passivation layer on the sidewall and/or bottom of etched layers. In another embodiment, sidewall passivation is managed by periodically clearing the overburden redeposition layer to preserve an even and uniform passivation layer thereon. The even and uniform passivation allows the features with high aspect ratios to be incrementally etched in a manner that pertains a desired depth and vertical profile of critical dimension in both high and low feature density regions on the substrate without generating defects and/or overetching the underneath layers.
Abstract:
Methods for forming anisotropic features for high aspect ratio application in etch process are provided in the present invention. The methods described herein advantageously facilitates profile and dimension control of features with high aspect ratios through a sidewall passivation management scheme. In one embodiment, sidewall passivations are managed by selectively forming an oxidation passivation layer on the sidewall and/or bottom of etched layers. In another embodiment, sidewall passivation is managed by periodically clearing the overburden redeposition layer to preserve an even and uniform passivation layer thereon. The even and uniform passivation allows the features with high aspect ratios to be incrementally etched in a manner that pertains a desired depth and vertical profile of critical dimension in both high and low feature density regions on the substrate without generating defects and/or overetching the underneath layers.
Abstract:
Methods, apparatus, and articles of manufacture such as software media for creating projected power production data are described herein. The method may comprise storing historical heat rate data for at least one power generation unit in a historical heat rate database. The method may also comprise retrieving the historical heat rate data from the database for a selected time interval and creating a projected cost curve and/or a projected price curve for a future time interval based on the historical heat rate data.
Abstract:
A method of generating NOx curves over a range of load points includes obtaining current measurements from a respective sensor and validating the current measurements. A plurality of input curves are generated using predefined inputs for each load point. The plurality of input curves include a first set point curve and a second set point curve, where the second setpoint curve includes the first setpoint curve offset with the current measurements. A plurality of NOx curves are generated including a design curve, an adjusted design curve, and a NOx generation curve created by a neural model. The second setpoint curve is passed through the neural model to derive the NOx generation curve. After validating the NOx generation curve and adjusted design curve, one of the plurality of NOx curves is outputted.
Abstract:
A dispensing aid is disclosed for facilitating removal of an individual product from a compressed package. The compressed package has multiple sides and contains a plurality of compressed products arranged in a row. Each of the products has first and second major surfaces. An opening is formed in the compressed package and is aligned perpendicular to the major surfaces of at least one of the products. The opening is sized to allow the products to be individually withdrawn. A slip sheet is positioned adjacent to at least the first major surface of the first product to be withdrawn. The slip sheet to the adjacent product has a lower average coefficient of friction value than the average coefficient of friction value of the first major surface of the product being withdrawn to an adjacent product. The slip sheet functions to reduce the force needed to remove the first product from the compressed package.
Abstract:
A polymeric composition comprising a film-forming binder and a wax emulsion. Optionally included is a retention aid. Also provided is a coated transfer sheet comprising a substrate and at least one release layer comprising the polymeric composition.
Abstract:
A article of apparel for moderating the body temperature of an individual is disclosed. The apparel includes a torso region for covering at least a portion of a torso of the individual. A plurality of cavities are distributed throughout the torso region, and a plurality of thermal inserts are positioned within the cavities. The thermal inserts may be bladders that enclose a fluid. A fitting system extends at least partially around the torso region. Instructions for utilizing the article of apparel may also be included, with the instructions being permanently secured to the article of apparel.
Abstract:
A process for etching a substrate and removing etch residue deposited on the surfaces in the etching chamber has two stages. In the first stage, an energized first process gas is provided in the chamber, and in the second stage, an energized second process gas is provided in the chamber. The energized first process gas comprises SF6 and Ar, the volumetric flow ratio of SF6 to other components of the first process gas being from about 5:1 to about 1:10. The energized second process gas comprises CF4 and Ar, the volumetric flow ratio of CF4 to other components of the second process gas being from about 1:0 to about 1:10.
Abstract:
A method for processing a silicon substrate disposed in a substrate process chamber includes transferring the substrate into the substrate process chamber. The substrate having a hard mask formed thereon and a patterned photoresist overlying the hard mask to expose portions of the hard mask. The chamber being the type having a source power system and a bias power system. The method further includes etching the exposed portions of the hard mask to expose portions of the silicon substrate underlying the hard mask. Thereafter, the patterned photoresist is exposed to a first plasma formed from a first process gas to remove the photoresist from the hard mask. Thereafter, the exposed silicon substrate is etched by exposing the substrate to a second plasma formed from a second process gas by applying RF energy from the source power system and biasing the plasma toward the substrate. The substrate is transferred out of the substrate processing chamber.
Abstract:
A process for etching a substrate 25 in an etching chamber 105, and simultaneously removing etch residue deposited on the surfaces of the walls 110 and components of the etching chamber 105. In one version, a two-stage method of opening a nitride mask layer on the substrate includes a first stage of providing a highly chemically reactive process gas in the chamber 105 to etch the nitride layer 32 and/or an underlying oxide layer 34, and a second stage of providing a less chemically reactive process gas in the chamber to etch the nitride layer 32 and/or the oxide layer 34 at a slower rate than the first stage. The first and second stage process gases may each comprise a fluorine containing gas, with the fluorine ratio of the first gas higher than the fluorine ratio of the second gas.