Abstract:
Embodiments are disclosed that improve etch uniformity during multi-patterning processes for the manufacture of microelectronic workpieces by reshaping spacers using thermal decomposition materials as a protective layer. Because the thermal decomposition material can be removed through thermal treatment processes without requiring etch processes, spacers can be reshaped with no spacer profile change or damage while suppressing undesired gouging differences in underlying layers and related degradation in etch uniformity.
Abstract:
A self-aligned multiple patterning (SAMP) process is disclosed for formation of structures on substrates. The process provides improved local critical dimension uniformity by using a first (lower) multicolor array pattern and second (upper) multicolor array pattern. The dimensions of finally formed structures are defined by the overlap of a first spacer that is formed as part of the first multicolor array pattern and a second spacer that is formed as part of the second multicolor array pattern. The spacer widths which control the critical dimension of the formed structure may be highly uniform due to the nature of spacer formation and the use of an atomic layer deposition process for forming the spacer layers of the both first (lower) multicolor array pattern and second (upper) multicolor array pattern. In one embodiment, the structure formed by a memory hole pattern for a dynamic random access memory (DRAM).
Abstract:
Embodiments are disclosed that improve etch uniformity during multi-patterning processes for the manufacture of microelectronic workpieces by reshaping spacers using thermal decomposition materials as a protective layer. Because the thermal decomposition material can be removed through thermal treatment processes without requiring etch processes, spacers can be reshaped with no spacer profile change or damage while suppressing undesired gouging differences in underlying layers and related degradation in etch uniformity.
Abstract:
Provided is a method of forming a spacer sidewall mask, the method comprising: providing a substrate in a process chamber, the substrate having a carbon mandrel pattern and an underlying layer, the underlying layer comprising an amorphous silicon layer above a silicon nitride layer; performing a breakthrough etch process including growth of a conformal native silicon oxide layer, creating an ALD patterned structure; performing a spacer sidewall sculpting process on the ALD patterned structure; performing an amorphous silicon main etch (ME) process on the ALD patterned structure, the ME process causing a spacer oxide open and carbon mandrel removal; and performing an amorphous silicon ME over etch (OE) process on the ALD spacer oxide pattern, the ME OE process transferring the ALD spacer oxide pattern into the amorphous silicon layer, generating a first sculpted pattern comprising a first sculpted sub-structure with a trapezoidal shape.
Abstract:
Embodiments of systems and methods for spacer formation for SAMP techniques are described. In an embodiment a method includes providing a substrate with a spacer having a conformal coating. The method may also include performing a spacer freeze treatment process. Additionally, the method may include performing an etch and clean process on the substrate. Further, the method may include controlling the spacer treatment process and etch and clean process in order to achieve spacer formation objectives.
Abstract:
Embodiments of systems and methods for spacer formation for SAMP techniques are described. In an embodiment a method includes providing a substrate with a spacer having a conformal coating. The method may also include performing a spacer freeze treatment process. Additionally, the method may include performing an etch and clean process on the substrate. Further, the method may include controlling the spacer treatment process and etch and clean process in order to achieve spacer formation objectives.
Abstract:
Provided is a method for critical dimension (CD) trimming of a structure pattern in a substrate, the method comprising: providing a substrate in a process chamber of a patterning system, the substrate comprising a first structure pattern and an underlying layer, the underlying layer comprising a silicon anti-reflective coating (SiARC) or a silicon oxynitride (SiON) layer, an optical planarization layer, and a target patterning layer; performing an optional CD trimming process of the first structure pattern; performing a series of processes to open the SiARC or SiON layer and performing additional CD trimming if required; and performing a series of processes to open the optical planarization layer, the series of processes generating a final structure pattern, and performing additional CD trimming if required; wherein the planarization layer is one of a group comprising an advance patterning film (APL), an organic dielectric layer (ODL) or a spin-on hardmask (SOH) layer.
Abstract:
Provided is a method for increasing pattern density of a structure on a substrate using an integration scheme comprising: providing a substrate having a patterned layer comprising a first mandrel and an underlying layer; performing a first conformal spacer deposition creating a first conformal layer; performing a first spacer reactive ion etch (RIE) process on the first conformal layer, creating a first spacer pattern; performing a first mandrel pull process removing the first mandrel; performing a second conformal spacer deposition creating a second conformal layer; performing a second RIE process creating a second spacer pattern, the first spacer pattern acting as a second mandrel; performing a second mandrel pull process removing the first spacer pattern; and transferring the second spacer pattern into the underlying layer; where the integration targets include patterning uniformity, pulldown of structures, slimming of structures, and gouging of the underlying layer.
Abstract:
Provided is a method of forming a spacer sidewall mask, the method comprising: providing a substrate in a process chamber, the substrate having a carbon mandrel pattern and an underlying layer, the underlying layer comprising an amorphous silicon layer above a silicon nitride layer; performing a breakthrough etch process including growth of a conformal native silicon oxide layer, creating an ALD patterned structure; performing a spacer sidewall sculpting process on the ALD patterned structure; performing an amorphous silicon main etch (ME) process on the ALD patterned structure, the ME process causing a spacer oxide open and carbon mandrel removal; and performing an amorphous silicon ME over etch (OE) process on the ALD spacer oxide pattern, the ME OE process transferring the ALD spacer oxide pattern into the amorphous silicon layer, generating a first sculpted pattern comprising a first sculpted sub-structure with a trapezoidal shape.
Abstract:
Techniques herein include methods for curing a layer of material (such as a resist) on a substrate to enable relatively greater heat reflow resistance. Increasing reflow resistance enables successful directed self-assembly of block copolymers. Techniques include receiving a substrate having a patterned photoresist layer and positioning this substrate in a processing chamber of a capacitively coupled plasma system. The patterned photoresist layer is treated with a flux of electrons by coupling negative polarity direct current power to a top electrode of the plasma processing system during plasma processing. The flux of electrons is accelerated from the top electrode with sufficient energy to pass through a plasma and its sheath, and strike the substrate such that the patterned photoresist layer changes in physical properties, which can include an increased glass-liquid transition temperature.