Abstract:
A fuel cell system including a stack provided with a plurality of unit cells generating electricity based on a chemical reaction between hydrogen gas and oxygen gas, and a reformer for supplying the hydrogen gas obtained by reforming hydrogen-containing fuel to the stack. A fuel storage tank is provided for storing the hydrogen-containing fuel to be supplied to the reformer and an air supplier is provided for supplying air to the stack. An injection nozzle assembly is detachably provided and includes an injection means placed in front of the inlet formed in the first side of the reformer to introduce the hydrogen-containing fuel from the fuel storage tank.
Abstract:
An apparatus is provided to generate a gas by mixing chemicals with water. Typically, the production of gas, particularly oxygen, by combining water with powders and other dry chemicals has not been widely employed. There have existed a number of preexisting barriers such as undesirable flow rates and yields. However, by utilizing multiple reaction chambers the flow rates and yields can be more precisely tailored for a variety of situations that may call for particular flow rates and yields. Additionally, the use of the dry chemicals would allow for a long self-life allowing the apparatus to be particularly useful in emergency situations.
Abstract:
An apparatus is provided to generate a gas by mixing chemicals with water. Typically, the production of gas, particularly oxygen, by combining water with powders and other dry chemicals has not been widely employed. There have existed a number of preexisting barriers such as undesirable flow rates and yields. However, by utilizing multiple reaction chambers the flow rates and yields can be more precisely tailored for a variety of situations that may call for particular flow rates and yields. Additionally, the use of the dry chemicals would allow for a long self-life allowing the apparatus to be particularly useful in emergency situations.
Abstract:
Methods and apparatus for mixing fluids are provided. The devices and methods operate without moving parts, and generate well-mixed fluids over a broad dynamic range of flow rates. Preferred embodiments include junction-type mixers, bundled mixers, and co-axial mixers. The devices and methods are optimized to produce rapid, accurate gradients to improve associated system throughput and reproducibility.
Abstract:
The present invention relates to the use of a high intensity, in-line rotor-stator apparatus to produce fine particles via antisolvent, reactive, salting out or rapid cooling precipitation and crystallization.
Abstract:
The device of the present invention delivers reactants to a reaction zone in a plug flow reactor. The feedblock encircles the reaction zone. Reactants enter the feedblock through an inlet port leading to a manifold for the delivery of reactants into a plurality of feed ports that are in connection with the reaction zone of a plug flow reactor. The invention additionally encompasses plug flow reactors including one or more feedblocks and the method of utilizing the feedblock for the reduction of radial variation in concentration upon entry of a reactant into the reaction zone.
Abstract:
A method is disclosed for maintaining a volumetric gas to liquid ratio in a segmented gas/liquid flow along a reactor of monolithic catalyst beds in series. The present invention includes the steps of: initiating the segmented gas/liquid flow at a first end of the reactor by introducing feed liquid and feed gas both at a predetermined volume and a predetermined flow rate; injecting an additional amount of gas at least once into any of the spaces between catalyst beds; and combining the segments of the segmented gas/liquid flow at a second end of the reactor. The injection of gas is controlled such that the segmented gas/liquid flow can be maintained near or at the Taylor regime.
Abstract:
The present invention provides a reactor for the gas-phase reaction of commercially available gases in the presence of an inert carrier gas to form product gas. The reactor has a streamlined, compact configuration and at least one solids collection and removal system downstream of the reactor, where solids are efficiently removed from the product gas stream, leaving high purity product gas. The removal system allows for a simple reactor design, which is easy to clean and operates continuously over longer periods of time.
Abstract:
A method of partially oxidizing a feed gas comprises providing a reactor containing a catalyst, providing a gas distributor comprising a body having a plurality of channels therethrough and a plurality of outlets from said channels for distributing gas across the catalyst, feeding the feed gas and the oxygen-containing gas into the gas distributor and allowing the feed gas and the oxygen-containing gas to flow through the gas distributor and out through the outlets into contact with the catalyst. The gas distributor preferably comprises a micro-channel gas distributor, which can be assembled by providing a plurality of etched plates defining flow channels, and stacking and fusing the plates. The reactant gases can be mixed within the gas distributor or maintained separately until they have exited the gas distributor.
Abstract:
A process for the conversion of hydrocarbons that are solid or have a high boiling temperature and may be laden with metals, sulfur or sediments, into liquids (gasolines, gas oil, fuels) with the help of a jet of gas properly superheated between 600 and 800null C. The process comprises preheating a feed 5 in a heater 8 to a temperature below the selected temperature of a reactor 10. This feed is injected by injectors 4 into the empty reactor 10 (i.e., without catalyst.) The feed is treated with a jet of gas or superheated steam from superheater 2 to activate the feed. The activated products in the feed are allowed to stabilize at the selected temperature and at a selected pressure in the reactor and are then run through a series of extractors 13 to separate heavy and light hydrocarbons and to demetallize the feed. Useful products appearing in the form of water/hydrocarbon emulsions are generally demulsified in emulsion breaker 16 to form water laden with different impurities. The light phase containing the final hydrocarbons is heated in heater 98 and is separated into cuts of conventional products, according to the demand for refining by an extractor 18 similar to 13.