Abstract:
A method for producing 1,1,1,2-tetrafluoropropene and/or 1,1,1,2,3-pentafluoropropene using a single set of four unit operations, the unit operations being (1) hydrogenation of a starting material comprising hexafluoropropene and optionally recycled 1,1,1,2,3-pentafluoropropene; (2) separation of the desired intermediate hydrofluoroalkane, such as 1,1,1,2,3,3-hexafluoropropane and/or 1,1,1,2,3-pentafluoropropane; (3) dehydrofluorination of the intermediate hydrofluoroalkane to produce the desired 1,1,1,2-tetrafluoropropene and/or 1,1,1,2,3-pentafluoropropene, followed by another separation to isolate the desired product and, optionally, recycle of the 1,1,1,2,3-pentafluoropropene.
Abstract:
A method for producing 1,1,1,2-tetrafluoropropene and/or 1,1,1,2,3-pentafluoropropene using a single set of four unit operations, the unit operations being (1) hydrogenation of a starting material comprising hexafluoropropene and optionally recycled 1,1,1,2,3-pentafluoropropene; (2) separation of the desired intermediate hydrofluoroalkane, such as 1,1,1,2,3,3-hexafluoropropane and/or 1,1,1,2,3-pentafluoropropane; (3) dehydrofluorination of the intermediate hydrofluoroalkane to produce the desired 1,1,1,2-tetrafluoropropene and/or 1,1,1,2,3-pentafluoropropene, followed by another separation to isolate the desired product and, optionally, recycle of the 1,1,1,2,3-pentafluoropropene.
Abstract:
An apparatus including storage means containing methanol and a peroxide, a housing containing a catalyst comprising at least one group 7, 8, 9, 10 or 11 transition metal, and means for introducing the methanol and the peroxide into the housing.
Abstract:
Techniques, systems and material are disclosed for thermochemical regeneration of biomass into renewable engineered fuel, storage of the renewable engineered fuel, respeciation of the renewable engineered fuel and transport. In one aspect, a method includes generating low density hydrogen fuel from biomass dissociation at a first location of a low elevation. The low density hydrogen fuel is self-transported in a pipeline to a second location at a higher elevation than the first location by traveling from the first location to the second location without adding energy of pressure. A high density hydrogen carrier is generated at the second location of higher elevation by reacting the low density hydrogen fuel with at least one of a carbon donor, a nitrogen donor and an oxygen donor harvested from industrial waste. The high density hydrogen carrier is delivered to a third location of a lower elevation than the second location while providing pressure or kinetic energy.
Abstract:
A pyrolytic hydrogen generator comprising a pressure vessel containing a plurality of cardboard receptacles for the thermally decomposable hydrogen generating material and an associated ignition system. Also, a modular pellet tray assembly for use in the generator comprises a plurality of trays having pellet holders and associated igniters and held in a stack by support rods that also provide electrical connectivity to the trays. Also, a pellet tray assembly comprises a plurality of pellet holders, wherein some of more outwardly disposed pellet holders contain only outwardly facing vents and are fired first. Also, the generator has an array of hydrogen generating elements arranged side by side and separated from one another into cells by partitioning provided with directional venting that only permits laterally exiting gases to vent outwardly. Alternatively, the elements can be separated into cells by a baffle system comprising gas confining and gas venting elements, which may be heat conductive.
Abstract:
A system for forming gas hydrates includes a reactor adapted to receive a hydrate-forming fluid and a reaction fluid and react the hydrate-forming and reaction fluids within a reverse micellar solution to form gas hydrate particles; and a gas hydrate removal system coupled to the reactor, the gas hydrate removal system adapted to receive the gas hydrate particles within the reverse micellar solution and transport the gas hydrate particles away from the reactor. The gas hydrate removal system is adapted to transport gas hydrate particles away from the reactor concurrently with the formation of gas hydrate particles within the reactor.
Abstract:
A safe, reduced pressure apparatus for generating water vapor from hydrogen and oxygen and feeding high purity moisture to processes such as semiconductor production. The apparatus eliminates the possibility of the gas igniting by maintaining the internal pressure of the catalytic reactor for generating moisture at a high level while supplying moisture gas from the reactor under reduced pressure. A heat dissipation reactor improvement substantially increases moisture generation without being an enlargement in size by efficient cooling of the reactor alumite-treated fins.
Abstract:
An apparatus to generate nitric oxide is disclosed in one embodiment in accordance with the invention as including a heat source and a vessel containing the heat source. A tablet may be placed within the vessel such that it is in thermal communication with the heat source to receive heat therefrom. The tablet may contain reactants that are substantially non-deliquescent and form nitric oxide in response to heat from the heat source.
Abstract:
Cassette based systems and methods of hydrogen storage, distribution, and recovery are disclosed. A cassette or other container may contain a hydrogen storage or storing material. Information may be stored in the material and subsequently read or accessed. A probe may be used to interrogate the material. The hydrogen content or other characteristics of the material may be determined based on the interrogation. A hydrogen dispensing unit may contain a depleted cassette acceptor to accept depleted cassettes and a charged cassette dispenser to dispense charged cassettes. The dispensing unit may be implemented in a hydrogen retail store or as a standalone unit. The retail store or the unit may connect to a hydrogen network and implement various business methods, as disclosed herein.