Abstract:
An applicator for dispensing a conformal coating material onto a substrate. The applicator has a body with a nozzle having a dispensing orifice at a distal end of the body, and assist air is supplied to a location adjacent the dispensing orifice. A seat is disposed in the nozzle around the dispensing orifice, and an end of a needle is movable into contact with and through the seat to terminate a flow of the coating material through the dispensing orifice and eliminate any coating material flow path downstream of the seat. A needle guide is used to laterally support the needle above the nozzle. The distal end of a nozzle is the distal end of the applicator and is exposed for cleaning.
Abstract:
A three-stream atomizing nozzle that has an air stream divider that separates the atomizing air from the source into three streams. The first stream is a straight air stream staying closest to and around the atomized water jet. The second stream is a swirl running around the first straight stream. The third stream is also a straight stream that wraps around the first straight stream and the second swirl. The nozzle also has a mixing chamber in which the three air streams are mixed together for the atomizing purpose. From the combination of the three air streams the nozzle can produce fine water droplets that are suitable for many uses and more importantly creates a tailorable water mass profile. The mass profile can be tailored into a shape that is close to a square shape which creates minimal coupling between adjacent zones.
Abstract:
In an atomizer device for the production of a liquid-gas mixture (4), the mixture (4) is introduced, particularly for compression, into a nozzle arrangement (3) in which the kinetic energy of the mixture (4) is in large part converted into compression energy by a pressure rise of the air. The atomizer device (2) includes a central air feed (16) and a nozzle chamber (18) for the supply of liquid surrounding the air feed. At or in the atomizing device, means (17) are arranged in the nozzle chamber for producing a swirled liquid flow in the nozzle chamber (18), and the swirled liquid flow emerges via a nozzle aperture (19) surrounding the air feed.
Abstract:
This invention relates to a three-stream atomizing nozzle for use with a rewet shower. The nozzle has an air stream divider that separates the atomizing air from the source into three streams. The first stream is a straight air stream staying closest to and around the atomized water jet. The second stream is a swirl running around the first straight stream. The third stream is also a straight stream that wraps around the first straight stream and the second swirl. The nozzle also has a mixing chamber in which the three air streams are mixed together for the atomizing purpose. The nozzle can from the combination of the three air streams produce fine water droplets that are suitable for a paper rewet shower and more importantly creates a tailorable water mass profile. The mass profile can be tailored into a shape that is close to a square shape which is ideal for rewet showers as a square profile creates minimal coupling between adjacent zones.
Abstract:
A method of sterilizing a site or contained volume includes providing an aqueous biocide solution containing a biocide agent such as hydrogen peroxide. A mist of reactive biocide droplets is generated by atomization at ambient pressure from the biocide solution and a flow of carrier medium or air is provided in communication with the mist. The flow of carrier medium is controlled to generate a biocide mist comprising a concentration of stable mist droplets within the carrier medium. By controlling aersolization, extraction and delivery of the stable mist droplets, a sufficient portion of the stable mist droplets for a sterilizing treatment of a designated site do not coalesce prior to treatment interaction with the treatment site. The process of formation, stabilization and extraction are done in-situ so that droplets do not coalesce during transport.
Abstract:
A spray nozzle is disclosed which includes an elongated nozzle body having an axially extending interior chamber and at least two radially extending air inlet ports communicating with the interior chamber. An elongated fluid inlet fitting having an axial fluid inlet passage is axially disposed within the interior chamber of the nozzle body. A fluid distribution insert is axially disposed within the axial fluid inlet passage of the fluid inlet fitting. The fluid distribution insert has an axial impact chamber formed therein, and an axial fluid feeding orifice which communicates with the axial impact chamber. An air swirling insert is disposed within the nozzle body. The air swirling insert has an interior bore for receiving the fluid distribution insert, and a fluid mixing orifice communicating with the fluid feeding orifice of the fluid distribution insert. A fluid metering insert is axially disposed within the impact chamber of the fluid distribution insert. The fluid metering insert has a metering orifice providing fluid communication between the impact chamber of the fluid distribution insert and the axial fluid inlet passage of the fluid inlet fitting. The metering orifice is offset from the axis of the fluid feeding orifice, and has a smaller diameter than the fluid feeding orifice.
Abstract:
A nozzle for a gas turbine engine that includes an air circuit, a water circuit, and a swirler that facilitate reducing erosion within the nozzle is described. The air circuit is formed by a first conduit that extends along the nozzle. The water circuit is formed by a second conduit that also extends along the nozzle and is radially inward from the first conduit. Each circuit is in flow communication with a discharge opening. An air swirler adjacent the discharge opening discharges air into water spray exiting the water circuit to facilitate evaporating the water to lower engine operating temperatures.
Abstract:
A spray nozzle is disclosed which includes an elongated nozzle body having an axially extending interior chamber and at least two radially extending air inlet ports communicating with the interior chamber. An elongated fluid inlet fitting having an axial fluid inlet passage is axially disposed within the interior chamber of the nozzle body. A fluid distribution insert is axially disposed within the axial fluid inlet passage of the fluid inlet fitting. The fluid distribution insert has an axial impact chamber formed therein, and an axial fluid feeding orifice which communicates with the axial impact chamber. An air swirling insert is disposed within the nozzle body. The air swirling insert has an interior bore for receiving the fluid distribution insert, and a fluid mixing orifice communicating with the fluid feeding orifice of the fluid distribution insert. A fluid metering insert is axially disposed within the impact chamber of the fluid distribution insert. The fluid metering insert has a metering orifice providing fluid communication between the impact chamber of the fluid distribution insert and the axial fluid inlet passage of the fluid inlet fitting. The metering orifice is offset from the axis of the fluid feeding orifice, and has a smaller diameter than the fluid feeding orifice.
Abstract:
In a spray device, a holder is screwed onto a tube, connected to a liquid supply line, in such a way that it is displaceable along the tube by rotation. The tube is surrounded at a distance by a coaxial sleeve, which is solidly anchored in the holder, having a discharge opening on its front end, which is conically narrowed, whose edge surrounds the front end of the tube, which carries a outlet opening, separated by a narrow annular gap from the tube. The sleeve carries a connecting piece laterally, to which a pressurized gas supply line is connected and which discharges eccentrically into the space between the sleeve and the tube, so that pressurized gas flowing in receives angular momentum. When the gas flows out of the annular gap, it mixes intensively with the liquid coming out of the outlet opening and forms a discharge cone made of a fine, symmetrical aerosol with the liquid. This spray device is simultaneously implemented as a pipette for aspirating liquids.
Abstract:
A spray gun, which is suited for spraying of abrasive media, and has a valve operable by means of a nozzle needle, which valve is arranged in the gun head near the nozzle opening, and has an operating and return device for the nozzle needle, has, in order for same to be self-cleaning and to be able to process also several components with abrasive material, a nozzle channel, which ends in the nozzle opening. The nozzle needle is movably supported in said nozzle channel. The nozzle channel has at least one bore laterally entering the nozzle channel and utilized to supply the media, which bore can be closed off by the nozzle needle, which has a diameter equal to a diameter of the nozzle channel. The length of the nozzle needle is chosen in such a manner that when the nozzle needle is in the resting state, it extends at least to the nozzle opening of the spray gun.