Abstract:
There is disclosed herein a driver system for an ultrasonic probe for allowing a user to have proportional control of the power dissipated in the probe in accordance with the position of power dissipation controls operable by the user and for automatically tuning upon user request such that the driving frequency is equal to the mechanical resonant frequency of said probe and such that the reactive component of the load impedance represented by said probe is tuned out. The system uses a tunable inductor in series with the piezoelectric crystal excitation transducer in the probe which has a flux modulation coil. The bias current through this flux modulation coil is controlled by the system. It is controlled such that the inductance of the tunable inductor cancels out the capacitive reactance of the load impedance presented by the probe when the probe is being driven by a driving signal which matches the mechanical resonance frequency of the probe. The resulting overall load impedance is substantially purely resistive. The system measures the phase angle and monitors the load current. This information is used to determine the mechanical resonance frequency by sweeping through a band of driving frequencies and finding the peak load current where the slope of the load current versus frequency function is greater than a predetermined constant. After the automatic tuning to the resonant frequency, the system automatically adjusts the bias current flowing through the flux modulation coil to maintain the substantially purely resistive load impedance for changing power levels. There is also disclosed herein an analog circuit to measure the Phase angle for the load driving signal and to adjust the frequency of the driving signal for best performance. This system includes an integrator to eliminate the effect of offset errors caused by operational amplifiers.
Abstract:
A battery powered portable acoustic transmitter comprises a plurality of single-pole, momentary contact switches, a type 555 pulse producing integrated circuit chip, and an electroacoustic transducer and matching tuning coil. An RC timing circuit includes a plurality of resistors selectively connectable in the timing circuit by the switches to vary the pulse output frequency. A transistor output circuit amplifies the pulses for driving the transducer. A plurality of diodes supply power to the chip and the transistor output circuit whenever a switch is activated. The integrated circuit chip, resistors, diodes and transistor are part of an active thick film circuit.
Abstract:
An electronic remote control transmitter employs a two transistor cascade oscillator having positive and negative feedback loops. The oscillator voltage is supplied through a switch assembly containing a plurality of momentary contact switches to a pair of voltage dividers supplying signal voltages in predetermined ratios to a two branch circuit in the negative feedback loop. One branch contains an inductor and the second branch a capacitor. Closure of any switch completes the DC circuits for the transistors. Signal voltage is supplied to the branches to produce a minimum amplitude, zero phase shift condition which establishes oscillation at that predetermined frequency. The output of the oscillator is amplified by a third transistor and supplied to an ultrasonic transducer for generating acoustical control signals.
Abstract:
The invention discloses various embodiments of an ultrasonic motor and converter adapted to be used in home or industrial ultrasonic devices. The ultrasonic motor is generally of a piezoelectric material having a removable tip or of a design in which the complete motor is contained in a housing, which housing has electrical contact means adapted to be plugged into an adapter which, in turn, is connected to a converter. The motor is designed such that frequency sensing means is provided therein and the feedback signal is utilized by the converter to adjust itself thereto. The converter includes tuned circuit means tuned to a band including a desired frequency for sustaining the vibration of said motor at the desired frequency.
Abstract:
This invention refers to a means for providing high voltage transient protection to piezoelectric wafers used in ultrasonic converters. The means is particularly useful in converters used for ultrasonic insertion applications.
Abstract:
A failure detection circuit for a power oscillator driven by a set of transistors which are switched to provide a square wave drive voltage to the oscillator comprises a narrow band pass filter and a voltage sensitive means. The band pass filter is coupled for receiving the square wave voltage and permits the passage of a predetermined odd-harmonic signal to the voltage sensitive means. The amplitude appearing at the voltage sensitive means, such as a lamp, is indicative of the operation of the oscillator.
Abstract:
The present invention relates to a method and a device for controlling an ultrasound tool unit for machining a workpiece on a machine tool. For this, a plurality of parameter sets are stored on a storage device of a control device of the machine tool. When controlling an ultrasound transducer of the ultrasound tool unit received on a work spindle of the machine tool on the basis of a sensor signal input into a controller by means of a generator operated by the controller, on the basis of a first parameter set, which is associated with the ultrasound tool unit and sets the operation of the controller, an operating setting of the controller is switched by changing the first parameter set setting the operation of the controller on the basis of a second parameter set, which is associated with the ultrasound tool unit, of the plurality of parameter sets stored on the storage device.
Abstract:
An ultrasonic touch sensor includes a touch structure configured to receive a touch; a transmitter arrangement configured to transmit one or more ultrasonic transmit waves toward the touch structure; a receiver arrangement configured to receive ultrasonic reflected waves produced by reflections of the one or more ultrasonic transmit waves and generate a plurality of measurement signals representative of the ultrasonic reflected waves; and a measurement circuit configured to measure a degree of variation of a plurality of measurement signals, compare the degree of variation with a detection threshold, and determine whether a no-touch event or a touch event has occurred at the touch structure based on whether the degree of variation satisfies the detection threshold.
Abstract:
Control consoles and methods for supplying a drive signal to a surgical tool are provided. The control console comprises a transformer with primary and secondary windings. The primary winding receives an input signal from a power source and induces the drive signal in the secondary winding to supply the drive signal to the surgical tool. A first current source comprising a leakage control winding is coupled to a path of the drive signal. The primary winding induces a first cancellation current in the leakage control winding to inject into the path of the drive signal to cancel leakage current. A sensor coupled to the path of the drive signal outputs a sensed signal to provide feedback related to leakage current. The sensor may connect to a second leakage current cancellation source and/or a fault detection stage. The power source may be variable and may also energize the second current source.
a printed circuit board (PCB) having a first surface and a second surface; at least one energy transmitter mounted on the first surface; at least one cooling element associated with the PCB second surface, wherein the cooling element is configured to cool the at least one energy transmitter via the PCB.