Abstract:
This disclosure generally relates to an automotive drone deployment system that includes at least a vehicle and a deployable drone that is configured to attach and detach from the vehicle. More specifically, the disclosure describes the vehicle and drone remaining in communication with each other to exchange information while the vehicle is being operated in an autonomous driving mode so that the vehicle's performance under the autonomous driving mode is enhanced.
Abstract:
Various embodiments provide a method for landing an unmanned aerial vehicle (UAV) in the presence of a wind. The method comprises: performing a first flare-maneuver whilst the UAV is flying. The flare-maneuver causes a front portion of the UAV to rise with respect to a rear portion of the UAV. The method also comprises steering the UAV along a path heading into a direction of the wind. The method further comprises performing a second flare-maneuver before the UAV impacts a landing surface to land. Various embodiments provide a corresponding UAV.
Abstract:
Electric aircraft, including in-flight rechargeable electric aircraft, and methods of operating electric aircraft, including methods for recharging electric aircraft in-flight, and method of deploying and retrieving secondary aircrafts.
Abstract:
A method of launching a powered unmanned aerial vehicle at an altitude of at least 13,000 m, the method comprising lifting the vehicle by attachment to a lighter-than-air carrier from a substantially ground-level location to an elevated altitude, causing the vehicle to detach from the carrier while the velocity of the vehicle relative to the carrier is substantially zero, the vehicle thereafter decreasing in altitude as it accelerates to a velocity where it is capable of preventing any further descent and can begin independent sustained flight.
Abstract:
A ground-based videometrics guiding method for aircraft landing or unmanned aerial vehicles recovery is provided. The method comprised the following steps: setting videos(1,2,3,4,5,6) near the landing area of the aircraft or unmanned aerial vehicles; real-time imaging the aircraft or unmanned aerial vehicles during their final approaches; and real-time measuring the trajectory, velocity, acceleration, post and other motion parameters of the aircraft or unmanned aerial vehicles by analyzing the video images and using videometrics technology, so as to provide guiding information for the aircraft landing or unmanned aerial vehicles recovery.
Abstract:
An aircraft for unmanned aviation is described. The aircraft includes an airframe, a pair of fins attached to a rear portion of the airframe, a pair of dihedral braces attached to a bottom portion of the airframe, a first thrust-vectoring (“T/V”) module and a second T/V module, and an electronics module. The electronics module provides commands to the two T/V modules. The two T/V modules are configured to provide lateral and longitudinal control to the aircraft by directly controlling a thrust vector for each of the pitch, the roll, and the yaw of the aircraft. The use of directly articulated electrical motors as T/V modules enables the aircraft to execute tight-radius turns over a wide range of airspeeds.
Abstract:
A vertical take-off and landing (VTOL) aircraft according to an aspect of the present invention comprises a fuselage, an empennage having an all-moving horizontal stabilizer located at a tail end of the fuselage, a wing having the fuselage positioned approximately halfway between the distal ends of the wing, wherein the wing is configured to transform between a substantially straight wing configuration and a canted wing configuration using a canted hinge located on each side of the fuselage. The VTOL aircraft may further includes one or more retractable pogo supports, wherein a retractable pogo support is configured to deploy from each of the wing's distal ends.
Abstract:
An aircraft for unmanned aviation is described. The aircraft includes an airframe, a pair of fins attached to a rear portion of the airframe, a pair of dihedral braces attached to a bottom portion of the airframe, a first thrust-vectoring (“T/V”) module and a second T/V module, and an electronics module. The electronics module provides commands to the two T/V modules. The two T/V modules are configured to provide lateral and longitudinal control to the aircraft by directly controlling a thrust vector for each of the pitch, the roll, and the yaw of the aircraft. The use of directly articulated electrical motors as T/V modules enables the aircraft to execute tight-radius turns over a wide range of airspeeds.
Abstract:
The present invention relates to an unmanned air vehicle (105), comprising a body having front (121) and rear (122) sections with at least one pair of end plates (110) connected to said body, wherein one end plate within said at least one pair of end plates is connected to the left side of said body and another end plate within said at least one pair of end plates is connected to the right side of said body, each end plate having upper and lower sections (111,112), wherein: a) said upper section is positioned above a mean line of said body; b) said lower section is positioned below said mean line of said body; and c) a ratio of the area of said upper section to the area of said lower section is less than 1.
Abstract:
An aircraft for unmanned aviation is described. The aircraft includes an airframe, a pair of fins attached to a rear portion of the airframe, a pair of dihedral braces attached to a bottom portion of the airframe, a first thrust vectoring module and a second thrust vectoring module, and an electronics module. The electronics module provides commands to the two thrust vectoring modules. The two thrust vectoring modules are configured to provide lateral and longitudinal control to the aircraft by directly controlling a thrust vector for each of the pitch, the roll, and the yaw of the aircraft. The use of directly articulated electrical motors as thrust vectoring modules enables the aircraft to execute tight-radius turns over a wide range of airspeeds.