Abstract:
This invention is a substantially completely biodegradable high starch polymer using completely biodegradable high polymer polyvinyl alcohol [PVOH] that is made to be compatible with starch. The two ingredients are mixed with the optional addition of elasticity enhancer and supplement agent to better the stability and durability of the products. During the mixing and heating process the starch molecular structures are randomized. The randomized starch molecules, the PVOH, the elasticity enhancer and the supplement then under go the process of co-polymerization. The mixture is then extruded, at a temperature that is above the crystallization temperature of the starch molecules, to form the first stage product, the pellets. The pellets can then be extruded into films using a traditional plastic film extruder.
Abstract:
A flame-retardant resin composition comprising a biodegradable resin and flame-retardant particles having a volume average particle diameter in the range of 1 nm to 500 nm dispersed in the biodegradable resin, wherein the flame-retardant particles contain a metal hydrate and have a coating layer containing an organic compound or a polysilicone, and a flame-retardant resin-molded article comprising a biodegradable resin and flame-retardant particles having a volume average particle diameter of 1 nm to 500 nm dispersed in the biodegradable resin, wherein the flame-retardant particles comprise a metal hydrate, and the flame-retardant resin-molded article has a flame retardancy of HB or higher according to the UL-94 test.
Abstract:
Personal care compositions comprising esters of 1,3-propanediol and acceptable carriers are provided. The esters can have at least 3% biobased carbon, and the compositions can further comprise 1,3-propanediol that is biologically-derived. Also provided are processes for producing personal care compositions comprising esters of 1,3-propanediol and acceptable carriers. The processes comprise providing biologically produced 1,3-propanediol, contacting the 1,3-propanediol with organic acids, which produces the esters, recovering the esters, and incorporating the esters into personal care formulations. Also provided are processes of making a personal care composition comprising providing an ester of 1,3 propanediol and mixing the ester with an acceptable carrier to form a personal care composition.
Abstract:
A composition that is advantageous not only in that it has biodegradability and flame retardancy, as well as mechanical strength, but also in that when disposed of the composition has few adverse effects on the natural environment. The composition is characterized in that it includes at least one organic polymer compound having biodegradability, a flame retardant additive, and a hydrolysis inhibitor for the organic polymer compound having biodegradability.
Abstract:
A biodegradable plastic composition enabling to stably adjust biodegradation rate, improve hydrolysis resistance and heat resistance, and retain transparency, molded articles thereof and a method for controlling biodegradation rate of the biodegradable plastic. In more detail, a biodegradable plastic composition, characterized in that said composition is made by compounding 100 parts by weight of a biodegradable plastic (A), in particular, an aliphatic type polyester with 0.01 to 5 parts by weight of a carbodiimide compound (B) and 0.01 to 3 parts by weight of an antioxidant (C), in particular, a hindered phenol type antioxidant with a molecular weight of not less than 400 alone or mixed antioxidants of said hindered phenol type antioxidant and a phosphite type antioxidant, a molded article thereof and a method for controlling biodegradation rate of the biodegradable plastic.
Abstract:
The invention provides a tea fiber/PHBV/PBAT ternary composite and its preparation method and application. Comprising the components in parts by weight, the composite contains 30-80 parts of a blending polymer of poly(butyleneadipate-co-terephthalate) (PBAT) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), 20-70 parts of tea powder, 1-19 parts of a plasticizer, 0.6-6 parts of an interface modifier, 3.3-10 parts of an auxiliary packing and 0.7-2 parts of a nucleating agent. The composite is environmental-friendly and cost-effective, exhibiting excellent mechanical properties such as hardness, compressive strength, and ductility. It can be used to manufacture environmental-friendly cups, tableware, compost bags, trash bags, shopping bags, electronic packaging bags, mulch films, 3D printing materials, foaming materials, and other plastic products.
Abstract:
Provided is a polylactide resin composition that is used in combination with a specific nucleating agent, wherein the composition is excellent in crystallization half-life and crystallinity degree, and thus can maintain the properties inherent in the polylactide resin while having excellent processability.
Abstract:
The present invention relates to polymer compositions comprising at least one basic additive, and processes comprising at least one process step to obtain the polymer composition or articles comprising the polymer composition. The polymer composition generally displays an enhanced biodegradability.
Abstract:
A component of a downhole tool utilized in oil and natural gas exploration and production comprises inorganic hydrolysable compound-containing materials. The inorganic hydrolysable compounds grant the component the degradability/dissolution in aqueous environment. The inorganic hydrolysable compounds include, but not are limited to, hydrolysable carbides, nitrides, and sulfides, such as aluminum carbide (Al4C3), calcium carbide (CaC2), magnesium carbide (Mg2C3 or MgCl2), manganese carbide (Mn3C), aluminum nitride (AlN), calcium nitride (Ca3N2), magnesium nitride (Mg3N2), aluminum sulfide (Al2S3), aluminum magnesium carbide (Al2MgCl2), and aluminum zinc carbide (Al4Zn2C3).
Abstract:
A biodegradable composite material which is produced by polymerizing a mixture of an aqueous dispersion of a natural polymer nanofiber including any one or more of a chitin nanofiber and a cellulose nanofiber, a dicarboxylic acid or a derivative thereof, and a diol. The biodegradable composite material has excellent biodegradable and mechanical properties.