Abstract:
A lubricant additive produced by various processes, including mixing an organophosphate and an organofluorine compound, reacting an organophosphate and an organofluorine compound, reacting a fluorinated organophosphate and an organofluorine compound (with or without molybendum disulfide), or reacting an organophosphate, a metal halide and an organofluorine compound (with or without molybendum disulfide), to produce a reaction mixture comprising the lubricant additive. Also, a lubricant produced by various processes, including mixing an organophosphate and an organofluorine compound, reacting an organophosphate and an organofluorine compound, reacting a fluorinated organophosphate and an organofluorine compound (with or without molybendum disulfide), or reacting an organophosphate, a metal halide and an organofluorine compound (with or without molybendum disulfide), and adding at least a portion of the reaction mixture to a lubricant base.
Abstract:
A composition that includes solid lubricant nanoparticles and an organic medium is disclosed. Also disclosed are nanoparticles that include layered materials. A method of producing a nanoparticle by milling layered materials is provided. Also disclosed is a method of making a lubricant, the method including milling layered materials to form nanoparticles and incorporating the nanoparticles into a base to form a lubricant.
Abstract:
A threaded joint for a steel pipe comprises a pin and a box with a contact surface having a threaded part and a unthreaded metal contact part, wherein a solid lubricating film containing one or more kinds of lubricating powders selected from graphite, mica, calcium carbonate and kaolin, a copper powder, and a binder is formed on at least one contact surface of the pin and the box.An object of the present invention is to provide a threaded joint for a steel pipe which allows for repeated fastening and loosening of a threaded joint without adversely influencing on a human body and environment, and is excellent in galling resistance, rust preventing property and gas tightness.
Abstract:
Disclosed is a piston (1) for a combustion engine, comprising hub bores (3) that are provided with plain bearing surfaces (5) and are used for accommodating a piston pin. In order to very effectively and inexpensively prevent the piston pin and the hub bores from jamming and wearing off, a self-lubricating coating (6) made of a thermally cured resin which contains embedded solid lubricant particles is applied directly to at least one subarea (Tb) of the plain bearing surfaces by means of rotary atomization.
Abstract:
Coating systems which provide corrosion resistance and, optionally, lubrication, for threaded connections are disclosed. The compositions comprise a first coating composition comprising polymer matrices of polyimides or epoxies which are modified with small amounts of a fluorine containing polymer. Also present in the coating compositions are corrosion inhibiting agents and inorganic particles having a mean diameter of between approximately 10 nm and 10 μm. Solid lubricants, which may include at least one of PTFE, HDPE, Graphite, and MoS2, are optionally added to provide the first coating with a low coefficient of friction. The coating systems may further comprise a second coating composition, comprising a solid lubricant dispersed within an epoxy resin and a solvent. The first and second coating compositions are deposited on at least a portion of at least one of the pin and box members of the threaded connections.
Abstract:
A low friction sliding mechanism employed in an internal combustion engine of an automotive vehicle. The low friction sliding mechanism includes first and second sliding members which are in slidable contact with each other. At least one of the first and second sliding members has a sliding surface portion whose at least a part is formed of a resinous material containing hydrophilic fine particle. Additionally, a lubricant exists between the first and second sliding members and includes a friction modifier containing at least one of organic oxygen-containing compound and aliphatic amine-based compound.
Abstract:
An object of the present invention is to provide a plain bearing which can be further improved in bearing capability, in particular, anti-seizure property, initial conformability and cavitation resistance. In the present invention, a sliding layer 2 is formed on the surface of a bearing alloy layer 1 formed of a copper-based or aluminum-based alloy, and the sliding layer 2 comprises a resin binder obtained by applying a strong shearing force to a composition comprising a polybenzimidazole resin as main constituent and at least one member selected from the group consisting of a polyamide-imide resin, a polyamide resin and an epoxy resin, to make the composition into a polymer alloy, and 25 to 75 mass % of a solid lubricant. Owing to such a constitution, toughness and strength are imparted to the sliding layer 2 and the anti-seizure property, initial conformability and cavitation resistance can also be improved.
Abstract:
A lubricant molded body, which is to be applied to a surface of a photosensitive layer for electrophotography in an image forming apparatus, for example, is composed of at least two kinds of higher fatty acid metallic salts having respectively different carbon numbers. As the higher fatty acid metallic salt that forms lubricant molded body, compounds such as zinc stearate, calcium stearate, barium stearate, aluminum stearate, zinc laurate, calcium laurate, etc. may be recited. The higher fatty acid metallic salts may contain at least one kind of fillers selected from the group consisting of silica, alumina, tungsten disulfide, molybdenum disulfide, graphite fluoride, graphite, boron nitride, polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), and polyvinylidene fluoride (PVDF).
Abstract:
According to the present invention, a sliding structure whereby wear resistance of a pair of sliding members that are able to slide relative to each other is improved and the friction coefficient can be reduced is provided. The sliding structure in which a lubricating oil is fed between sliding faces of a pair of sliding members that are able to slide relative to each other such that at least one of the members is allowed to slide is provided. The sliding structure is characterized in that: an amorphous carbon film is formed on the sliding face of at least one sliding member so as to result in a D to G band integrated intensity ratio in the Raman spectrum of between 1.5 and 2.0; and the lubricating oil existing between the sliding faces contains a compound comprising at least molybdenum and sulfur so as to result in a molybdenum content of not less than 400 ppm relative to the lubricating oil.
Abstract:
A high-temperature lubricant is shown and described. The lubricant includes a base stock and about 1 to about 20 weight percent zirconium 2-ethylhexanoate. The lubricant may also include about 1 to about 9 weight percent bismuth 2-ethylhexanoate.