Abstract:
A variable valve driving apparatus of an internal combustion engine, including a drive shaft rotatably supported by a cam bracket, a drive cam disposed about an outer periphery of the drive shaft, a link arm having a first end connected to the drive cam, an oscillating cam extending from the drive cam configured to press and release a drive valve of the engine to open and close the drive valve, a link rod having a first end rotatably connected to the oscillating cam, and a control shaft rotatably supported by the cam bracket. The control shaft includes a main shaft rotatably supported by the cam bracket, an eccentric shaft spaced apart from the main shaft, and a plurality of webs connecting the main shaft and the eccentric shaft. The eccentric shaft is connected to an oscillating arm configured to transfer a drive force of the drive cam. The oscillating arm has a first portion rotatably connected to a second end of the link arm and a second portion rotatably connected to a second end of the link rod, the first and second portions being spaced apart axially with respect to the eccentric shaft. A first flow path for supplying lubricant to a first sliding contact area between the oscillating arm and the eccentric shaft is formed through the control shaft. The first flow path extends from the main shaft to the eccentric shaft through a web located beside the second portion of the oscillating arm.
Abstract:
A camshaft phaser comprising a differential bevel gear arrangement to vary the phase relationship of a camshaft to a crankshaft in an internal combustion engine. In the differential gear system, a 45° beveled input gear is mounted parallel to and coaxial with a 45° beveled output gear. One or more 45° beveled spider gears is disposed in meshed relationship with the input and output gears in a gear pattern having a rectangular cross-sectional appearance. Rotation of the input gear causes an opposite rotation of the output gear. The phase relationship between the input and output gears may be varied by varying the position of the spider gear. The input gear and spider gears may be driven via a sprocket in time with the crankshaft in a plurality of arrangements.
Abstract:
A parallel guide portion as an integral structure of a sprocket and a vane, as well as a slant guide portion, are arranged alternately on the same circumference, with circumferential gaps being formed between said guide portion and the parallel guide portion, said guide portion having a shape such that the circumferential gaps become smaller in one axial direction of a cam shaft. Wedge members are disposed in the circumferential gaps respectively and are moved in one axial direction to fill up the circumferential gaps, thereby fixing the phase between the sprocket and the vane into a locked state. The wedge angle of each wedge member is set sufficiently small and, by utilizing varying torques acting on the cam shaft, said members are each moved and locked in one axial direction with a spring. Said members are actuated in an opposite axial direction with oil pressure to release the locked state, thereby permitting a phase angle control. By utilizing a varying torque acting on the cam shaft, the phase of the cam shaft is returned for itself to an intermediate position and is locked without looseness.
Abstract:
In a V-type 8-cylinder engine in which the torque for rotating an intake camshaft is higher when intake valves of a #1 cylinder and a #3 cylinder in a left bank are closed, respective noses of a cam for opening and closing the intake valve of the #1 cylinder and a cam for opening and closing the intake valve of the #3 cylinder are each formed at a phase position displaced by X° (X>0) in the advance direction further from the phase position displaced in the advance direction by 90° with respect to the nose of a cam for opening and closing the intake valve of a cylinder fired after a delay of 180° in crank angle.
Abstract:
A variable valve timing control apparatus employs a five-blade vane member fixedly connected to a camshaft end and rotatably disposed in a phase-converter housing formed integral with a sprocket driven by an engine crankshaft. Five phase-retard chambers and five phase-advance chambers are defined by five blades of the vane member and the housing, for creating a phase change of the vane member relative to the housing. A circumferential width of each of a first pair of blades, located on both sides of a first blade having a maximum circumferential width, is dimensioned to be less than a circumferential width of each of a second pair of blades, circumferentially spaced apart from the first blade rather than the first pair. The circumferential width of each of the second pair of blades is dimensioned to be less than the maximum circumferential width of the first blade.
Abstract:
A system for controlling fluid flow to or from a cylinder of an internal combustion engine is disclosed. The system includes a drive shaft having a rotary valve mounted thereon. The system also includes a cylinder head a cylinder head accommodating the rotary valve and at least part of the drive shaft therein, the rotary valve being arranged to selectively open or close a flow opening in the cylinder head. The system also includes a source of rotation and a mechanical drive train rotatably coupling the source of rotation to the drive shaft. The mechanical drive train has a non-circular element rotatably coupled to the source of rotation and a non-circular element rotatably coupled to the drive shaft. The non-circular elements are rotatably coupled to cause a speed variation in one of the non-circular elements upon a constant rotation of the other non-circular elements.
Abstract:
A system for controlling fluid flow to or from at least one cylinder of an internal combustion engine is disclosed. The system includes a rotary valve. A cylinder head having a valve chamber accommodates the rotary valve. The rotary valve is arranged to selectively open or close a flow opening in the cylinder head. A drive motor is coupled to the rotary valve to impart rotation thereto.
Abstract:
A method for controlling valve timing for and engine having adjustable valve timing is presented. In one embodiment, the method allows the intake valve timing to be controlled with respect to exhaust valve timing or the method allows the exhaust valve timing to be controlled with respect to intake valve timing. In addition, the method can bound valve overlap between upper and lower limits so that engine emissions and fuel economy may be improved.
Abstract:
A camshaft phaser system includes an oil control spool valve having two opposing springs to center the spool at a rest position to lock the phaser rotor by blocking supply/vent to both the C1 and C2 chambers, obviating a conventional locking pin mechanism. A double-acting solenoid actuator moves the spool to first and second positions, supplying or venting C1 and C2, respectively. The rotor may be locked hydraulically at any position between full advance and full retard. A system for monitoring the rotational positions of the crankshaft and camshaft includes magnets disposed on opposite sides of the shaft axis. A magnetic sensing element senses the rotational direction of the magnetic field for each position of the shaft. An engine control module uses the position signal and an algorithm to lock the rotor at a desired position.
Abstract:
A requested volume flow ratio calculated based on a requested torque, an amount of two times a spit-back gas amount at the valve overlap time calculated based on a requested residual gas rate, and a spit-back gas amount of the time when an intake valve is closed are added together, to set a requested valve passing gas amount of the intake valve, thereby determining a target operating characteristic of the intake valve based on the requested valve passing gas amount.