Abstract:
An adjustable-stroke solenoid valve assembly includes supply, control, and exhaust ports, an inner cavity having first and second seats, a solenoid coil, and a plunger assembly. The plunger assembly includes an armature shifted by the coil. The plunger assembly also includes a stem having a first end adjustably engaged with the armature, and a second end adjustably engaged with a poppet. The plunger assembly additionally includes a first surface that gets pressed against the first seat to block fluid flow to the control port when the coil is de-energized and a second surface that gets pressed against the second seat to facilitate fluid flow to the control port when the coil is energized. Adjustment of the stem's first end relative to the armature and of the poppet on the stem's second end establish a predetermined stroke for the plunger assembly and a predetermined fluid flow rate to the control port.
Abstract:
A valve operation control system for an internal combustion engine in which hydraulic pressure applied to a valve operation mode changing mechanism is controlled by hydraulic pressure control means that is formed from a holder mounted on a cylinder head, a spool valve formed by slidably housing a spool valve body in a valve body, and an electromagnetic open/close valve for controlling hydraulic pressure of a pilot hydraulic chamber, wherein the holder (109) is formed by integrally connecting a housed portion (109a) and a projecting portion (109b) by means of a connection portion (109c), the housed portion (109a) being housed between the cylinder head (22R) and a head cover, the projecting portion (109b) projecting outside the cylinder head (22R) and the head cover and having the electromagnetic open/close valve (113, 114) mounted thereon, a seal face (116) with the head cover is formed on the connection portion (109c), and the valve body (110) is provided so as to be connected to the housed portion (109a) while being housed between the head cover and the cylinder head (22R). This enables the sealing properties between the holder and the head cover to be enhanced.
Abstract:
A variable valve actuation apparatus for an internal combustion engine includes a first link arm which has a projected portion that is engageable with and disengageable from a guide rail, and which is displaceable in the axis direction of a camshaft, and a link shaft linked to the first link arm in such a manner as to allow rotation but constrain movement in the axis direction. When an electro-magnetic solenoid is electrified, the first link arm rotates about the link shaft so that the projected portion engages with the guide rail. In association with the displacement of the link arms that occurs during the engagement, the state of motion of second rocker arms changes, so that the opening characteristic of valves provided for each cylinder is switched.
Abstract:
A variable valve lift apparatus includes a camshaft with a first cam lobe and a second cam lobe, a cam follower with a first follower contacting the first cam lobe and a second follower contacting the second cam lobe, a connection rotatably connecting the first follower to the second follower, a main body supporting the first follower and the second follower, a connector selectively connecting the first follower and the second follower to the main body, a lost motion elastic member provided on the main body for supplying restoring force to the first follower and the second follower, and a valve configured to be opened and closed by the cam follower.
Abstract:
To provide a variable valve driving device which can accurately control the lift amount of valves and can be manufactured at a low cost. The device has: valves (10) serving as intake valves or exhaust valves of an engine; springs (11) for biasing the valves (10) in the valve closing direction; a cam (12) for pressing the valves (10) in the valve opening direction against a biasing force of the springs; a piston (19) joined to the valves (10); a control chamber (21) configured by a piston insertion hole (20) into which the piston (19) is inserted; and a control mechanism (24) for changing the valve closing timing of the valves (10) by controlling the introduction and discharge of a working fluid into and from the control chamber (21).
Abstract:
An internal-combustion engine provided with a simplified system for variable actuation of the valves, which envisages for two different engine cylinders a single solenoid valve that controls connection to an exhaust channel of two pressurized chambers associated to the intake valves of the two different cylinders.
Abstract:
Provided is a variable valve operating apparatus for an internal combustion engine, which can favorably reduce electric power consumption in a vehicle system that may stop the internal combustion engine during power-up of the vehicle system.A changeover mechanism 90 is provided which is capable of switching between a connection state in which a first rocker arm 96 and a second rocker arm 98 are in connection with each other via a changeover pin 112, 118 and a disconnection state in which the connection is released. The changeover mechanism 90 performs energization of actuators 130 for each cylinder in a case in which fuel supply to the internal combustion engine 12 is stopped in response to an establishment of a predetermined stop condition. The above-described energization of the actuator 130 for each cylinder is stopped in a case in which a crankshaft 78 of the internal combustion engine 12 stops rotating during an energization time period of the actuator 130 and in which the crankshaft 78 is not driven by an external power.
Abstract:
A variable valve device includes: a drive shaft (1) that rotates in synchronization with a crankshaft of an engine; a drive cam (13) provided on the drive shaft (1); a rocker cam (6) pivotally supported on the drive shaft (1); an engine valve that is driven to open and close by the rocker cam (6); a rocker shaft (7) disposed parallel to the drive shaft (1); a rocker arm (3) pivotally supported on the rocker shaft (7); a first link (4) that links the rocker arm (3) and the drive cam (13); a second link (5) that links the rocker arm (3) and the rocker cam (6); and a rocker shaft position modifying means (27) for modifying an operating angle and a lift of the engine valve by varying a position of the rocker shaft (7) relative to the drive shaft (1), wherein the position of the rocker shaft (7) relative to the drive shaft (1) is modified such that within a predetermined operating angle range of the engine valve, a variation of a maximum lift of the engine valve accompanying control of the operating angle is suppressed in comparison with a case in which the operating angle is modified outside of the predetermined operating angle range.
Abstract:
A continuously variable valve lift system for an engine may include a driving cam fixed to a camshaft, a control shaft disposed in parallel to the camshaft with a predetermined distance, an upper rocker arm, one end of which is rotatably coupled to the control shaft and the other end of which is slidably contacted to and rotated by the driving cam, lower rocker arm that is selectively pushed by the upper rocker arm and selectively pushes a valve, rocker arm follower slidably coupled to the lower rocker arm and contacting the upper rocker arm, wherein the rocker arm follower transmits an operational force of the upper rocker arm to the lower rocker arm, and a variable mechanism that changes contact point of the rocker arm follower and the upper rocker arm according to rotation of the control shaft.
Abstract:
An engine has a cylinder block mounted on a crankcase and a cylinder head mounted on the cylinder block. The cylinder head has one side forming an intake port and an intake valve and another side forming an exhaust port and an exhaust valve. A camshaft includes an intake cam assembly and an the exhaust cam assembly, which respectively drive an intake valve driving member and an exhaust valve driving member. The intake cam assembly includes a first intake cam and a second intake cam. The intake valve driving member includes a low lift driving member corresponding to the first intake cam and a high lift driving member corresponding to the second intake cam. The low lift driving member and the high lift driving member form a hydraulic cylinder, which receives therein hydraulically operable pistons.