Abstract:
An apparatus is disclosed for obtaining ellipsometric measurements from a sample. A probe beam is focused onto the sample to create a spread of angles of incidence. The beam is passed through a quarter waveplate retarder and a polarizer. The reflected beam is measured by a detector. In one preferred embodiment, the detector includes eight radially arranged segments, each segment generating an output which represents an integration of multiple angle of incidence. A processor manipulates the output from the various segments to derive ellipsometric information.
Abstract:
A polarization filter utilizing Brewster's angle. The polarization filter includes a stimulus receiving body having more than one facet. At least two of the more than one facet being arranged at Brewster's angle (relative to the plane of polarization of the incident stimulus) and positioned in different radial orientations (relative to the incident stimulus) which are adapted to provide differential transmission or reflection of polarized electro-magnetic radiation coming from a common source.
Abstract:
A polarimetry technique for measuring optical activity that is particularly suited for high throughput screening employs a chip or substrate (22) having one or more microfluidic channels (26) formed therein. A polarized laser beam (14) is directed onto optically active samples that are disposed in the channels. The incident laser beam interacts with the optically active molecules in the sample, which slightly alter the polarization or the loser beam as it passes multiple times through the sample. Interference fringe patters (28) are generated by the interaction of the laser beam with the sample and the channel walls. A photodetector (34) is positioned to receive the interference fringe patterns and generate an output signal that is input to a computer or other analyzer (38) for analyzing the signal and determining the rotation of plane polarized light by optically active material in the channel from polarization rotation calculations.
Abstract:
Disclosed embodiments pertain to optical assemblies which impart a spatially dependent rotation to linearly polarized light. A pair of optical assemblies may be used to apply a spatially dependent rotation to linearly polarized light in the region between the optical assemblies, and produce a spatially independent rotation after traversing the second optical assembly. A pair of optical assemblies may be used in combination with a wave plate to allow a determination of the Stokes parameters of an elliptically polarized beam of light.
Abstract:
Embodiments of the present invention are directed to pulsed polarimeters for conducting remote, non-perturbative diagnostic measurements of inducing fields of a medium demonstrating induced optical activity. In one aspect, a pulse polarimeter includes a light source emitting a polarized light pulse having sufficiently narrow spatial extent at a prescribed wavelength and a light gathering optical system including a light gathering optic having an optic axis directed toward the medium and positioned to collect and collimate a predetermined solid angle of an emission from the medium into a collimated emission beam, while preserving the polarization state of the emission. The pulse polarimeter includes a directional coupler that makes coincident the propagation direction of the polarized light pulse with the optic axis and a polarization detection system for measuring the intensity and determining the polarization state of the collimated emission beam continuously in time as the polarized light pulse transits the medium.
Abstract:
A measuring apparatus is disclosed which includes an interferometer for measuring a wavefront of light transmitted through a test object by interference between light under test passed through the test object and reference light, and measures a polarization characteristic of the test object. The measuring apparatus has a measuring unit for measuring a polarization characteristic matrix in a pupil plane of the test object while the reference light is blocked or fringe scan is performed.
Abstract:
In one embodiment, a polarimeter includes a modulated polarizer, a detector and a processing system. The modulated polarizer is modulated at a modulation frequency and is configured to transmit a portion of an optical signal based on its modulation. The detector is configured to generate a time-varying output signal related to a time-varying power of the transmitted portion of the optical signal. The processing system is configured to i) detect at least three frequency components of the time-varying output signal, and ii) determine the polarization state of the optical signal based on the at least three frequency components.
Abstract:
A device and a method for high-speed linear polarization imaging of a scene are disclosed. The device comprises a polarization modulator for modulating the polarization of light emitted from the scene in order to obtain at least three linear polarization states of the light. The polarization modulator comprises a polarizer, a first polarization rotation block comprising a fixed quarter-wave plate and a first liquid crystal operating as a quarter-wave plate, and a second polarization rotation block comprising a second liquid crystal operating as a half-wave plate. Each of the first and second liquid crystals arc switchable between two states, thereby providing the at least three polarization states to the polarization modulator. The device further comprises a sensor adapted to capture image frames of the light from the scene at each polarization state of the polarization modulator.
Abstract:
A measuring apparatus includes a light intensity information acquisition section 40 that acquires light intensity information relating to a measurement light containing a given band component, the measurement light having been modulated by optical elements included in an optical system 10 and a measurement target (or a sample 100), and a calculation section 50 that calculates at least one matrix element of a Mueller matrix that indicates the optical characteristics of the measurement target based on the light intensity information relating to the measurement light and a theoretical expression for the light intensity of the measurement light. The light intensity information acquisition section 40 acquires the light intensity information relating to a plurality of the measurement lights obtained from the optical system 10 by changing setting of a principal axis direction of at least one of the optical elements. The calculation section 50 performs a carrier amplitude coefficient calculation process, and a matrix element calculation process that calculates the at least one matrix element based on a carrier amplitude coefficient and the theoretical expression for the carrier amplitude coefficient including the at least one matrix element.
Abstract:
A Fabry-Perot cavity filter includes a first mirror and a second mirror. A gap between the first and the second mirror monotonically varies as a function of width of the filter. This filter may be used with photodetector and a channel selection filter in an optical device, such as a spectrum analyzer. The channel selection filter may be a metal nanooptic filter array which includes plurality of subwavelength apertures in a metal film or between metal islands.