Abstract:
Variable aperture and actuator assemblies are provided for a radiation detector housing in an imaging system. The variable aperture assembly includes a ring mounted over the housing's window, a plate having a first aperture disposed over the window, an aperture blade operatively coupled to the ring so the blade moves laterally relative to the first aperture, and an aperture drive mechanism having a body and an actuator coupling member extending at an angle from the body. The drive mechanism is adapted to drive the blade laterally away from the first aperture when the member is moved in a first lateral direction, and over the first aperture to define a second aperture disposed over the window when the member is moved in a second lateral direction. The actuator assembly has an actuator and an actuator arm adapted to engage the actuator coupling member to control the lateral movement of the member.
Abstract:
A thermal infrared camera may be used under a wide variety of target-scene radiation conditions, with interchangeable or zoom lenses requiring matching or different size cold stops. A variable aperture assembly of a thermal infrared camera integrates a rigid open truss-like framework that's capped by an aperture ring and bottomed by a driving ring, and a radiation shield, located inside the framework, that contains an aperture ring at an upper side. A plurality of blades that collectively define an aperture positioned between the upper aperture rings. Opposite blade ends are coupled to respective ones of the two aperture rings, permitting pivotal movement in one ring and radial movement in the other ring, when the rings are rotated relative to one another, to change the size of the formed aperture. Both refractive and reflective infrared telescopes may be retro-fitted with variable aperture devices to enhance infrared imaging performance.
Abstract:
A device for measuring the temperature of a measured spot of a measured object without contacting the measured object is provided. The device includes a detector on which electromagnetic radiation emanating from the measured spot is projected by an optical imaging system. A sighting device for marking the position and/or the size of the measured spot includes at least two light sources. Each of the two light sources provides a respective sighting ray.
Abstract:
A thermally-directed optical imager and a method of thermally-directing optical processing are described. The thermally-directed imager includes a thermal image sensor, an optical image sensor, and a processor. The thermal and optical sensors respectively generate thermal image and optical image signals. The processor uses the thermal image signal to determine an optical processing region, which the processor uses to derive a compressed-image signal. The optical processing region may be determined by detecting a center of heat-mass associated with the thermal image signal or by performing an edge detection algorithm. In addition, the thermally-directed imager may be focused, zoomed, or centered via the thermal image signal.
Abstract:
The present invention relates to a process for keeping a tuyere passing through a metallurgical vessel free of a skull by intermittendly passing an oxygen-containing gas through the tuyere to dissolve the skull, wherein it is determined that an interval for passing said oxygen-containing gas through the tuyere needs to be started by detecting electromagnetic radiation emanating from a spot in the interior of the melt by means of a dual wavelength pyrometer and comparing the intensity of the pyrometer signals with the ratio of the pyrometer signals, and initiating said interval for passing said oxygen-containing gas through the tuyere, upon the condition that the combined intensity of the signals falls below a predetermined threshold value and that the ratio of the signals remains substantially constant.
Abstract:
Remoting a display. A method that may be practiced, for example, in a networked computing environment including a local computer system running one or more applications and a remote computer that displays graphical information to a user for the one or more applications at the local computer system. The remote computer includes a number of surfaces. Drawing information including drawing commands is sent to the remote computer. Meta information is sent to the remote computer defining information about which surface from among the number of surfaces the drawing information applies. Composition information is sent to the remote computer defining the display characteristics of the surface.
Abstract:
A continuously variable diaphragm or swappable fixed aperture for use in thermal infrared cameras, which aperture or diaphragm can be cooled to cryogenic temperatures. The invention contemplates mounting aperture control means, if necessary, in a vacuum or extending the control mechanism through a vacuum in a thermally isolated manner to avoid radiation load on the photocell. The inventive method implements such a diaphragm and control system. The invention makes possible the object of using a single thermal infrared camera under a wide variety of target-scene radiation conditions that may be rapidly changing, with interchangeable or zoom camera lenses requiring matching or different size cold stops, and under other such dynamic situations.
Abstract:
A thermal infrared camera may be used under a wide variety of target-scene radiation conditions, with interchangeable or zoom lenses requiring matching or different size cold stops. A variable aperture assembly of a thermal infrared camera integrates a rigid open truss-like framework that's capped by an aperture ring and bottomed by a driving ring, and a radiation shield, located inside the framework, that contains an aperture ring at an upper side. A plurality of blades that collectively define an aperture positioned between the upper aperture rings. Opposite blade ends are coupled to respective ones of the two aperture rings, permitting pivotal movement in one ring and radial movement in the other ring, when the rings are rotated relative to one another, to change the size of the formed aperture. Both refractive and reflective infrared telescopes may be retrofitted with variable aperture devices to enhance infrared imaging performance.
Abstract:
An infrared camera includes a detector sensitive to infrared radiation and optics for focusing an object to be monitored on the detector. A light source emits a narrow beam within the visible wavelength region towards the object to be imaged by the detector.
Abstract:
A conventional infrared thermometer is equipped with a visible light source having exactly the same size and shape as the infrared detector to illuminate the target so as to visibly identify the area to be thermally measured. The light source is judiciously positioned within the system so as to make the images of the detector and the source formed by achromatic zooming optics coincide on the target surface. As a result, the exact location and dimensions of the target area under test are precisely identified and the system can perform errorless measurements of targets located at variable distances from the thermometer. Alternatively, the system is enabled to errorlessly measure the same target with variable spatial resolution.