Abstract:
The present invention relates generally to the field of biochemical laboratory. More particularly the invention relates to the improved and more efficient instrumental features of equipment used as e.g. fluorometers, photometers and luminometers. The object of the invention is achieved by providing an optical measurement instrument where there is an interface (218, 223, 233a, 233b, 238) for a changeable optical module (240), the interface being adapted for at least one excitation beam and at least two emission beams. This allows performing various types of measurements by changing an optical module. The change of module and related parameters can be performed automatically controlled by software. It is also possible to easily upgrade the instrument for new types of measurements by just providing the instrument with a new optical module and the related software.
Abstract:
The present invention relates generally to the field of biochemical laboratory. More particularly the invention relates to the improved and more efficient instrumental features of equipment used as e.g. fluorometers, photometers and luminometers. The object of the invention is achieved by providing an optical measurement instrument where there is an interface (218, 223, 233a, 233b, 238) for a changeable optical module (240), the interface being adapted for at least one excitation beam and at least two emission beams. This allows performing various types of measurements by changing an optical module. The change of module and related parameters can be performed automatically controlled by software. It is also possible to easily upgrade the instrument for new types of measurements by just providing the instrument with a new optical module and the related software.
Abstract:
The invention relates to an imaging system for optical automatic analysers, especially fluorescence readers. On the sample side, the imaging system contains a cylindrical lens array and a prism array, which is arranged upstream of the cylindrical lens array. The prismatic effect of the prisms of the prism array lies in the direction of the cylinder axes of the cylindrical lenses. Together with a telescopic imaging system, the inventive imaging system creates a number of parallel cylindrical focussing volumes between the cylindrical lens array and a detector array, these focussing volumes being slanted towards the optical axis of the telescopic system in relation to the vertical. The arrangement enables the detection of fluorescence with a large aperture in one direction, and at the same time enables depth selective analysis of the fluorescence signal, especially the discrimination of the fluorescent radiation originating from the solution above.
Abstract:
An optical analyzer measures light directed from a sample to the detector. The apparatus has an optics module which has a detector and optics for directing light emitted by the sample to the detector and which module can be positioned alternatively either so that the light is directed to the detector from above the sample or so that light is directed to the detector from below the sample. The invention is usable in particular in fluorometers and in luminometers.
Abstract:
A multiple spectral imager includes three modular imaging spectrometers, each having a respective collimator, dispersing element, and imaging system. Each collimator includes a pair of parabolic reflectors having a common focal point and an elongated slit positioned at the focal point, and each collimator defines a pupil near the respective dispersing element. The dispersing elements disperse light from various positions along the slit of the collimator into the respective imaging system, and each of the imaging systems includes an array detector that intercepts the dispersed light from the respective dispersing element and registers spectral information in a first direction and spatial information in a second direction. The spectrometers are stacked adjacent to one another, and light from a single directing mirror enters the collimators of all three of the spectrometers. The three array detectors are each responsive to a separate respective spectral region.
Abstract:
A modular optical system for a Fourier transform infrared spectrometer which has a baseplate assembly with a baseplate having a top surface and two mirrors mounted to focus at a point above the baseplate. At least two pins extend upwardly from the baseplate top surface and are fixed with respect to the foci of the mirrors. An accessory module has a flat bottomed positioning plate with portions defining pin holes to coincide with the pins of the face plate. A sample holding accessory platform extends from the positioning plate and is fixed with respect to the pin holes so that when the pin holes of the positioning plate are positioned over the pins of the baseplate and the positioning plate bottom surface is engaged with the locator pads on the baseplate, the sample is located at the foci of the mirrors. Three accessory module guides are located on the baseplate having spring-mounted retainer balls accurately spaced a common distance from the surface of the baseplate which engage beveled chamfers in the sides of the positioning plate and hold the accessory module in place. A sample to be analyzed may be placed in the accessory module and positioned in the FTIR spectrometer by hand, requiring no tools to accurately position the sample.
Abstract:
An electrophoretic record that includes at least one gel separation is mounted for motion laterally of the separation record. A light source is positioned to illuminate at least a portion of the record, and a linear array camera is positioned to have a field of view of the illuminated portion of the record and orthogonal to the direction of record motion. The elements of the linear array are scanned at increments of motion of the record across the field of view to develop a series of signals corresponding to intensity of light at each element at each scan increment.
Abstract:
A spectrmeter radiation transmission system is disclosed which permits concurrent availability of numerous alternative accessory devices by conserving radiation throughput. Parabolic reflectors are used to provide alternating collimated and confocal segments of radiation, thereby largely eliminating the problem of vignetting (i.e., loss of radiation throughput due to beam size expansion). Modular enclosure elements are provided, inside which the radiation path travels between the parabolic reflectors.
Abstract:
The invention relates to a lensless imaging device, comprising
an emitting part comprising a light source (1) configured to emit a light beam in a direction of emission and intended to follow an optical path, a receiving part incorporating an electronic circuit board (3) bearing a sensor (2) having a planar capture surface (20) intended to receive said light beam in a direction normal to said capture surface, said optical path being subdivided into several successive optical sections, each optical section corresponding to a distinct direction of propagation of the light beam.
Abstract:
The present invention provides novel microfluidic substrates and methods that are useful for performing biological, chemical and diagnostic assays. The substrates can include a plurality of electrically addressable, channel bearing fluidic modules integrally arranged such that a continuous channel is provided for flow of immiscible fluids.