Abstract:
Methods and apparatus for concentration determination using polarized light. The apparatus includes a first polarized light source having a first light source polarization axis and a second polarized light source having a second light source polarization axis generally perpendicular to the first light source polarization axis. Also, a first polarized light receiver having a first polarized light receiver polarization axis and configured to measure an intensity of light transmitted from the first light receiver polarizer and a second polarized light receiver having a second polarized light receiver polarization axis substantially perpendicular to the first light receiver polarization axis and configured to measure an intensity of light transmitted from the second light receiver polarizer, wherein the first and second light receiver polarization axes are generally +/−45 degrees relative to the first and second light source polarization axes.
Abstract:
A diagnostic device is provided that comprises a light source for transmitting a light beam through a blood sample to a light detector, and a permanent magnet, wherein one of the permanent magnet and blood sample is automatically movable relative to the other between a “HIGH” magnetic state position and a “LOW” magnetic state position, such that a substantially high magnetic field is applied to the blood sample causing any hemozoin in the blood sample to tend toward perpendicular orientation to the substantially magnetic field and the suppression, or enhancement of light based on its polarization, and a zero-to-near-zero magnetic field is applied to the blood sample causing the randomization of any hemozoin in the blood sample and a baseline amount of light to pass through the blood sample in the “LOW” magnetic state position.
Abstract:
A sheet discriminator, which can be included in an image forming apparatus, includes an optical information detector, a sheet distinguisher, and a sheet thickness detector. The optical information detector includes a light emitter to emit light to a recording medium and a light receiver to receive the light and detects information of the recording medium. The sheet distinguisher distinguishes a type of the recording medium based on the information detected by the optical information detector. The sheet thickness detector includes a displacement gauge to sandwich the recording medium with an opposing member disposed facing the displacement gauge and to move from an initial position thereof and a displacement detector to detect an amount of displacement of the displacement gauge. The sheet thickness detector detects a thickness of the recording medium based on detection results obtained by the displacement detector.
Abstract:
An excitation light source emits excitation light to a target sample. An image sensor includes pixels arranged one-dimensionally or two-dimensionally, and receives measurement light from the sample according to the excitation light. A polarization selector arranged between the sample and image sensor includes pixels arranged one-dimensionally or two-dimensionally. Each pixel receives a corresponding portion of the measurement light, selects light having a polarization direction that corresponds to a driving signal applied to the pixels, and supplies this light to the image sensor. A measurement control unit supplies the cyclic driving signal having a first period T1 and acquires data I1, I2, I3, and I4 from each pixel of the image sensor for each exposure time segment T2=T1/4 obtained by dividing the first period T1 by 4.
Abstract:
A diagnostic device is provided that comprises a light source for transmitting a light beam through a blood sample to a light detector, and a permanent magnet, wherein one of the permanent magnet and blood sample is automatically movable relative to the other between a “HIGH” magnetic state position and a “LOW” magnetic state position, such that a substantially high magnetic field is applied to the blood sample causing any hemozoin in the blood sample to tend toward perpendicular orientation to the substantially magnetic field and the suppression, or enhancement of light based on its polarization, and a zero-to-near-zero magnetic field is applied to the blood sample causing the randomization of any hemozoin in the blood sample and a baseline amount of light to pass through the blood sample in the “LOW” magnetic state position.
Abstract:
A floating particle detection device 1 is capable of accurately identifying the type of a floating particle while achieving simplification of a configuration of the device, the device includes: a laser light irradiator (10) that includes a laser light emitting element (11) and a back-monitor-use light receiving element (12); a scattered light receiver (20) that selectively receives light of a predetermined polarization component among scattered light generated when a floating particle (50) is irradiated and that generates a second detection signal; and an identification processor (30) that identifies the type of the floating particle on the basis of a first detection signal and the second detection signal. Incident light entering the back-monitor-use light receiving element (12) includes: a back-monitor-use laser beam (L0); and backscattered light (Lbs) travelling toward the laser light irradiator (10) among the scattered light (Ls).
Abstract:
The present disclosure generally relates to a device and a method for alignment. The alignment device provides optical architecture to align the alignment device to an analyte and measure the optical properties of an analyte. The method for alignment provides steps for aligning an optical measurement device to an analyte.
Abstract:
A pulse multiplier includes a polarizing beam splitter, a wave plate, and a set of multi-surface reflecting components (e.g., one or more etalons and one or more mirrors). The polarizing beam splitter passes input laser pulses through the wave plate to the multi-surface reflecting components, which reflect portions of each input laser pulse back through the wave plate to the polarizing beam splitter. The polarizing beam splitter reflects each reflected portion to form an output of the pulse multiplier. The multi-surface reflecting components are configured such that the output pulses exiting the pulse multiplier have an output repetition pulse frequency rate that is at least double the input repetition pulse frequency.
Abstract:
A microparticle measuring apparatus for highly accurately detecting the position of a microparticle flowing through a flow channel includes a light irradiation unit for irradiating a microparticle flowing through a flow channel with light, and a scattered light detection unit for detecting scattered light from the microparticle, including an objective lens for collecting light from the microparticle, a light splitting element for dividing the scattered light from the light collected by the objective lens, into first and second scattered light, a first scattered light detector for receiving an S-polarized light component, and an astigmatic element disposed between the light splitting element and the first scattered light detector, and making the first scattered light astigmatic. A relationship between a length L from a rear principal point of the objective lens to a front principal point of the astigmatic element, and a focal length f of the astigmatic element satisfies the following formula I. 1.5f≦L≦2.5f (I)
Abstract:
The invention relates to a method for investigating a sample, the sample being impinged upon by illuminating light, and detected light emerging from the sample being directed to a detector, and the illuminating light being directed through an acousto-optic component with which the impingement upon the sample by illuminating light can be temporarily interrupted. The method is notable for the fact that the sample is illuminated with a first illuminating light bundle that has a first linear polarization direction, and with a second illuminating light bundle whose linear polarization direction is continuously switched over between the first linear polarization direction and a second linear polarization direction different from the first linear polarization direction, the illuminating light having the first linear polarization direction proceeding along a first light path and illuminating light having the second linear polarization direction proceeding along a second light path, and the acousto-optic component combining the light paths.