Abstract:
An X-ray CT apparatus capable of imaging a subject based on X-rays of multiple energy levels while using an ordinary X-ray detector includes an X-ray tube which generates X-rays from multiple focal points of different 3-dimensional positions sequentially on a time-division basis, a plurality of filters which implement the filtering individually for the X-rays generated individually from the focal points, a collimator which equalizes the irradiation range of the X-rays generated individually from the focal points, collection means which collects projection data of multiple views of a subject of imaging for the X-rays generated individually from the focal points, and reconstruction means which reconstructs an image based on the projection data. The anode of the X-ray tube has multiple impingement portions where electrons released by the cathode impinge at multiple positions on the trajectory of electrons sequentially on a time-division basis.
Abstract:
An x-ray target assembly is provided comprising a center hub element affixed to a drive shaft and an outer disc including a plurality of tab extensions removably engaging the periphery of the center hub element. A target element is mounted on an upper outer disc surface.
Abstract:
A device for generating an x-ray point source includes a target, and an electron source for producing electrons which intersect with the target to generate an x-ray point source having a size which is confined by a dimension of the target.
Abstract:
X-ray generation apparatus including an elongated target body and a mount from which the body projects to a tip remote from the mount. The target body includes a substance that, on being irradiated by a beam of electrons of suitable energy directed onto the target body from laterally of the elongate target body, generates a source of x-ray radiation from a volume of interaction of the electron beam with the target body. The mount provides a heat sink for the target body.
Abstract:
An X-ray tube has a metal-ceramic envelope having rotatably mounted therein an anode disk, which may be axially translatable and provided with a peripheral rim surface wherein a focal track spiral groove (or multiple annular grooves) is disposed. The groove(s) include a focal spot(s) area spaced from an electron emitting cathode(s), which is associated with a beam-forming structure and an X-ray transparent window mounted within an insulating structure aligned with the focal spot area. The insulating structure incorporates a multiplicity of imbedded annular electrodes which control an accelerating electric field, and which are structurally and operationally integrated into a power-control assembly that provides the electrical power and control signals necessary for the functioning of the X-ray tube.
Abstract:
Systems and methods for obtaining multi-slice images having a total thickness of up to about 160 mm or more in a single gantry rotation in computed tomography or volume computed tomography are described. One embodiment comprises an extended, multi-spot x-ray source for computed tomography or volume computed tomography imaging, comprising: an electron gun capable of producing a plurality of electron beams, each electron beam focused at a predetermined distance and aimed in a predetermined direction; and a plurality of targets positioned to receive the electron beams and generate x-rays in response thereto, each target comprising a predetermined focal spot thereon, wherein each electron beam is synchronized to strike, at an appropriate time, a predetermined target comprising a predetermined focal spot thereon.
Abstract:
An x-ray source with an x-ray source target are provided. The x-ray source includes an electron source. The x-ray source also includes an x-ray transmission window. The x-ray source also includes an x-ray source target located between the electron source and the window, wherein the target is arranged to receive electrons from the electron source to generate x-rays in the x-ray source target, and a rotational mechanism adapted to rotate the x-ray source target. A method of producing x-rays and an x-ray target are also provided.
Abstract:
A high-quality and high-reliability rotary anode target for X-ray tubes, of which the mechanical strength at high temperatures is increased and which is applicable not only to low-speed rotation (at least 3,000 rpm) but also even to high-speed rotation at high temperatures, and also a method for producing it. The rotary anode has a two-layered structure to be formed by laminating an Mo alloy substrate that comprises from 0.2% by weight to 1.5% by weight of TiC with the balance of substantially Mo, and an X-ray generating layer of a W—Re alloy that overlies the substrate.
Abstract:
A method and apparatus for reducing off-focus radiation by modifying a shape of a rotating target anode disposed within a cathode grounded x-ray tube. The shape of the target anode body is modified such that surfaces of the target anode which could otherwise direct the greatest amounts of off-focus radiation toward an x-ray sensitive imaging device are angled or shortened so as to redirect the off-focus radiation away from a focal direction. These modifications to surfaces of the target anode body include modifying a front surface, a side or edge surface, and a back surface.
Abstract:
In a scattered X-ray correction method for an X-ray computerized tomograph, the quantity of X-rays passed through a phantom is measured to be converted into logarithms. Obtained from the logarithmic data is a scattered X-ray correction curve representing a relationship between the measured data in the logarithmic expression and an amount of scattered X-ray correction. For a subject, the quantity of X-rays penetrated therethrough is measured to be transformed into logarithms. From the measured data undergone the logarithmic conversion and the scattered X-ray correction curve, there is attained a scattered X-ray correction amount in a linear region which is the state before the logarithmic conversion. The measured data of the subject in the logarithmic expression is subjected to an inverse logarithmic conversion. From the obtained values, the scattered X-ray correction amount is subtracted such that the resultant values are again converted into logarithms, thereby producing a computerized tomogram from the logarithmic values.