Abstract:
Systems and methods for decoding block and concatenated codes are provided. These include advanced iterative decoding techniques based on belief propagation algorithms, with particular advantages when applied to codes having higher density parity check matrices. Improvements are also provided for performing channel state information estimation including the use of optimum filter lengths based on channel selectivity and adaptive decision-directed channel estimation. These improvements enhance the performance of various communication systems and consumer electronics. Particular improvements are also provided for decoding HD Radio signals, including enhanced decoding of reference subcarriers based on soft-diversity combining, joint enhanced channel state information estimation, as well as iterative soft-input soft-output and list decoding of convolutional codes and Reed-Solomon codes. These and other improvements enhance the decoding of different logical channels in HD Radio systems.
Abstract:
Systems and methods for decoding block and concatenated codes are provided. These include advanced iterative decoding techniques based on belief propagation algorithms, with particular advantages when applied to codes having higher density parity check matrices. Improvements are also provided for performing channel state information estimation including the use of optimum filter lengths based on channel selectivity and adaptive decision-directed channel estimation. These improvements enhance the performance of various communication systems and consumer electronics. Particular improvements are also provided for decoding HD Radio signals, including enhanced decoding of reference subcarriers based on soft-diversity combining, joint enhanced channel state information estimation, as well as iterative soft-input soft-output and list decoding of convolutional codes and Reed-Solomon codes. These and other improvements enhance the decoding of different logical channels in HD Radio systems.
Abstract:
A receiver may be operable to generate estimates of transmitted symbols using a sequence estimation process that may incorporate a non-linear model. The non-linear model may be adapted by the receiver based on particular communication information that may be indicative of non-linearity experienced by the transmitted symbols. The receiver may generate a reconstructed signal from the estimates of the transmitted symbols. The receiver may adapt the non-linear model based on values of an error signal generated from the reconstructed signal, and the values of the error signal may be generated from a portion of the generated estimates that may correspond to known symbols and/or information symbols. The values of the error signal corresponding to the known symbols may be given more weight in an adaptation algorithm, and the values of the error signal corresponding to the information symbols may be given less weight in the adaptation algorithm.
Abstract:
A radio transmitting/receiving device uses a channel interleaver with turbo codes serving as error-correcting codes to convert burst errors into random errors. The radio transmitting/receiving device, in Code Block Concatenation (15), when dividing a Transport Block into a plurality of Code Blocks, performs channel coding so that burst errors that occur during transmission are distributed to all the Code Blocks. Therefore, when burst errors occur, the errors can be uniformly distributed to all Code Blocks in a Transport Block so that no unevenness occurs in error resilience between the Code Blocks.
Abstract:
Embodiments of a method and an apparatus for detecting multiple complex-valued symbols belonging to discrete constellations. The method and apparatus is a detector that finds a closest vector, or a close approximation of it, to a received vector. The disclosure also gets (optimally, in case of two transmit sources) or closely approximates (for more than two transmit sources) the most likely sequences required for an optimal bit or symbol a-posteriori probability computation. Also part of the present disclosure is represented by Also embodiments of a method and an apparatus to determine a near-optimal ordering algorithms for the aforementioned purpose. The method and apparatus achieves optimal performance for two transmit antennas and achieves near-optimal performance for a higher number of antennas, with a lower complexity as compared to a maximum-likelihood detection method and apparatus. The method and apparatus are suitable for highly parallel hardware architectures.
Abstract:
The present invention discloses a method for determining an interleaver, including: determining an interleaver identifier according to a binding parameter and a preset association relationship between the interleaver identifier and the binding parameter; performing interleaving processing on to-be-sent data by using an interleaver corresponding to the interleaver identifier; and performing de-interleaving processing on received data by using the interleaver corresponding to the interleaver identifier. An embodiment of the present invention further provides a corresponding device. According to technical solutions of the present invention, during data transmission, a UE and an eNodeB can accurately learn an interleaver that is used by the other party, thereby de-interleaving data correctly.
Abstract:
Disclosed are a multimode decoder method and device. The method includes: interleaving pre-stored to-be-decoded data to obtain an interleaving address; and based on the interleaving address, using a Radix-4 algorithm architecture, multiplexing a set of MAP decoding units under different standards, and in a parallel processing method, performing MAP iterative decoding processing on the to-be-decoded data according to standard types.
Abstract:
Disclosed are various embodiments involving a two-step searcher for cell discovery. Multiple scrambling codes associated with multiple neighboring cells are obtained. Slot timing is obtained for a received signal based at least in part on a detection of primary synchronization peak energy in the received signal. One of the scrambling codes for decoding the received signal is identified based at least in part on testing multiple scrambling code hypotheses in parallel during an accumulation time period of the received signal in response to obtaining the slot timing.
Abstract:
Proposed is a method of decoding a differentially encoded PSK modulated optical data signal carrying FEC encoded data values. The optical signal is corrected by an estimated phase offset. From the corrected signal, respective likelihood values for the FEC encoded data values are derived, using an estimation algorithm which accounts for a differential encoding rule used for differentially encoding the optical signal. The derived likelihood values are limited to a predetermined range of values. From the limited likelihood values, FEC decoded data values are derived, using an algorithm which accounts for a FEC encoding rule used for FEC encoding the FEC encoded data values.
Abstract:
A low-density parity-check (LDPC) decoder may receive LDPC coded data. The LDPC decoder may perform a decoding iteration associated with decoding the LDPC coded data. The decoding iteration may be performed by processing a group of layers. Each layer may include a corresponding set of check node elements, and may be processed by causing each check node element, of the set of check node elements corresponding to the layer, to update a set of variable node elements, connected to the check node element and associated with the LDPC coded data, based on a check node function associated with the check node element. The decoding iteration may be performed such that each layer is processed in parallel, and such that each check node element updates the corresponding set of variable node elements in parallel. The LDPC decoder may provide a result of performing the decoding iteration.