Abstract:
Provided is a patterned conductive film may include a conductive interconnected nano-structure film. The conductive interconnected nano-structure film may include a first region and a second region adjacent to the first region. A conductivity of the first region may be at least 1000 times a conductivity of the second region.
Abstract:
This wiring board is provided with: a plurality of metal wires disposed upon an insulating substrate; and a transparent adhesive agent layer which is disposed upon the metal wires, and which is in direct contact with the metal wires. The metal wires include: a first metal wire which has a pulse signal supplied thereto; and a second metal wire which has a fixed electric potential applied thereto. The pulse signal has a reference level identical to the fixed electric potential, and has a pulse train in which a plurality of pulses having a pulse width of not more than 3 msec are arranged, the integral time of the pulses in a period of 600 seconds being less than 60 seconds.
Abstract:
Embodiments of the present invention provide a preparation method of a patterned film, a display substrate and a display device, avoiding falling off of a film layer occurring in the process of peeling off a photoresist layer. The preparation method of the patterned film comprises: forming a preset film layer on a surface of a preset substrate; covering the preset film layer with an isolation layer; forming a photoresist layer on a surface of the isolation layer and forming a pattern of the isolation layer with a patterning process; then removing the preset film layer which is not covered by the pattern of the isolation layer, peeling off the photoresist layer and removing the remaining, isolation layer to form a pattern of the preset film layer.
Abstract:
A touch panel includes a transparent substrate, a wiring formed on at least one surface of the transparent substrate, a conductive layer formed on the wiring and the transparent substrate, and a protective layer formed on the conductive layer. The wiring transmits a signal from the conductive layer. The conductive layer is transparent and has a pattern formed by patterning a material formed on the wiring.
Abstract:
A method of making an imprinted optical micro-channel structure for transmitting light to an optical receiver or receiving light from an optical transmitter includes forming a curable optical layer over a substrate and imprinting one or more optical micro-channels in the optical layer with a first stamp. The curable optical layer is cured to form a cured optical layer having the optical micro-channels imprinted in the cured optical layer. A curable light-transparent material is located in the optical micro-channels and cured to form light-pipes of cured light-transparent material in the optical micro-channels. The optical transmitter located in alignment with a light-pipe for transmitting light through the light-pipe or the optical receiver is located in alignment with a light-pipe for receiving light from the light-pipe.
Abstract:
A manufacturing method of a patterned transparent conductor includes: (1) providing a transparent conductor including nanowires formed of a metal; and (2) applying a percolation-inhibition composition to a portion of the transparent conductor to partially degrade nanowires included in the portion. The percolation-inhibition composition includes a complexing agent for the metal.
Abstract:
Disclosed are embodiments of a structure with a metal silicide transparent conductive electrode, which is commercially viable, robust and safe to use and, thus, optimal for incorporation into devices, such as flat panel displays, touch panels, solar cells, light emitting diodes (LEDs), organic optoelectronic devices, etc. Specifically, the structure can comprise a substrate (e.g., a glass or plastic substrate) and a transparent conducting film on that substrate. The transparent conducting film can comprise a metal silicide nanowire network. For example, in one embodiment, the metal silicide nanowire network can comprise multiple metal silicide nanowires fused together in a disorderly arrangement so that they form a mesh. In another embodiment, the metal silicide nanowire network can comprise multiple metal silicide nanowires patterned so that they form a grid. Also disclosed herein are various different method embodiments for forming such a structure.
Abstract:
Disclosed is a lighting device which comprises: an optical member comprising a protruding optical pattern forming a gap with an adjacent layer; at least one light emitting unit inserted into the optical member; and a resin layer formed on the optical member and the at least one light emitting unit, whereby it is possible to obtain an effect that the shapes of light change depending on the viewing angle when viewing the light source by producing various protruding optical patterns, an effect that the whole thickness can be reduced, and an effect that the degree of design freedom can be enhanced when designing products thanks to an enhanced flexibility.
Abstract:
A method of manufacturing a metal line microstructure is provided. Firstly, a substrate is provided. Then, a seed layer is formed on a surface of the substrate. Then, a photoresist layer is formed on a surface of the seed layer, and a photolithography and etching process is performed to form a trench in the photoresist layer, wherein the trench has a specified width. Then, an electroplating process is performed to fill a conductive layer into the trench. Afterwards, the photoresist layer and a portion of the seed layer uncovered by the conductive layer are removed, so that the metal line microstructure is produced.
Abstract:
A method of fabricating a capacitance touch panel module includes forming a plurality of first conductive patterns on a substrate comprising a touching area and a peripheral area along a first orientation, a plurality of second conductive patterns along a second orientation, and a plurality of connecting portions in the touching area; forming a plurality of insulated protrusions, in which each insulated protrusion covering one connecting portion, and forming an insulated frame on the peripheral area; and forming a bridging member on each insulated protrusion.