Abstract:
A method of manufacturing an insulating sheet, the method including providing a reinforcement material having a thermoplastic resin layer stacked thereon; stacking the thermoplastic resin layer stacked on the reinforcement material over a core substrate; and hot pressing the reinforcement material and the thermoplastic resin layer onto the core substrate.
Abstract:
An object of this invention is to provide a polyimide film suitable for use in flexible printed circuit boards and the like which have high flexibility and dimensional stability, and to provide a laminate and metal-clad laminate which uses such a polyimide film. This invention relates to a multilayer polyimide film being a polyimide film having a multilayer structure, including: a core layer; and clad layers provided on each side of the film, which clad layers are exposed, the core layer being a non-thermoplastic polyimide having an average coefficient of linear expansion at a temperature from 100° C. to 200° C. in a range of 5 ppm/° C. to 20 ppm/° C., each of the clad layers being a polyimide having a peeling strength of 3 N/cm or less, the film as a whole having an average coefficient of linear expansion at a temperature range of 100° C. to 200° C. in a range of 9 ppm/° C. to 30 ppm/° C., and (a)>(b), where (a) is an average modulus of elasticity of the core layer and (b) is an average modulus of elasticity of the clad layers.
Abstract:
A display device includes: a glass substrate including a driver circuit and a plurality of connection terminals that is connected to the driver circuit and is arranged in array, and an elongated FPC, which has a plurality of panel connection terminals that correspond to the connection terminals and which is mounted on the glass substrate, wherein the FPC has a coverlay. The FPC has a chamfered-area end gap between an end portion of the coverlay facing an end face of the glass substrate and a chamfered-area end portion of the glass substrate in a mounted state, wherein the chamfered-area end gap is covered with an insulating resin, and wherein the chamfered-area end gap at a center portion of the FPC is narrower than the chamfered-area end gap at both end portions of the FPC.
Abstract:
A polyimide film for production of a wiring board having a metal wiring, which is formed by forming a metal layer on one side (Side B) of the polyimide film, and etching the metal layer; the polyimide film is curled toward the side (Side A) opposite Side B; and the curling of the polyimide film is controlled so as to reduce the drooping of the wiring board having a metal wiring formed thereon. The handling characteristics and productivity in IC chip mounting may be improved by the use of the polyimide film.
Abstract:
An electric terminal device is provided with glass substrate 11, glass-substrate-side electric terminals 15 formed on glass substrate 11, tape carrier packages 16a and 16b which are larger in thermal expansion rate than glass substrate 11, and tape-side electric terminals 21 provided to correspond to glass-substrate-side electric terminals 15. Tape-side electric terminals 21 include alignment terminals 25 to align with terminals at the outer most edges of glass-substrate-side electric terminals 15, and connecting terminals 26 electrically and mechanically connected to glass-substrate-side electric terminals 15 due to thermal expansion of tape carrier packages 16a and 16b by thermo-compression bonding on a condition that alignment terminals 25 of tape-side electric terminals 21 are aligned with the terminals of glass-substrate-side electric terminals 15.
Abstract:
A wiring board (3) according to an embodiment of the present invention includes an inorganic insulating layer (11A); a first resin layer (12A) on one main surface of the inorganic insulating layer (11A); a second resin layer (13A) on another main surface of the inorganic insulating layer (11A); and a conductive layer (8) partially on one main surface of the second resin layer (13A), the one main surface being on an opposite side to the inorganic insulating layer (11A). The inorganic insulating layer (11A) includes a plurality of first inorganic insulating particles (14) which are bound to each other at a part of each of the first inorganic insulating particles and gaps (G) surrounded by the plurality of first inorganic insulating particles (14). A part of the first resin layer (12A) and a part of the second resin layer (13A) are located inside the gaps (G).
Abstract:
Disclosed herein is a core made of a glass material so as to be capable of preventing generation of warpage in a printed circuit board due to a difference in a coefficient of thermal expansion at the time of manufacturing the printed circuit board. The core includes: an organic cloth; and a glass having the organic cloth formed therein. The core is manufactured in a form in which rigidity thereof is increased by impregnating the organic cloth having a negative coefficient of thermal expansion is impregnated in a liquid-phase glass, thereby making it possible to effectively prevent generation of warpage in the printed circuit board due to the difference in a coefficient of thermal expansion.
Abstract:
A wiring substrate includes: a plate-like base material containing carbon fibers; a wiring layer formed on a surface of the base material; a first via including a first through hole penetrating through the base material, a first resin layer formed on an inner wall of the first through hole and including a second through hole, and a first conductive layer formed on an inner wall of the second through hole; and a second via including a third through hole penetrating through the base material and a second conductive layer formed on an inner wall of the third through hole, wherein an inside diameter of the third through hole is greater than an inside diameter of the second through hole.
Abstract:
A multilayer ceramic substrate including an inner-layer section, surface-layer sections stacked on opposed principal surfaces of the inner-layer section, and surface electrodes provided on at least one surface of the surface-layer sections. The surface-layer sections contain SiO2-MO—B2O3—Al2O3 based glass and an Al2O3 filler, wherein MO is at least one selected from the group consisting of CaO, MgO, SrO, and BaO. The coefficient of thermal expansion in the surface-layer sections is lower than the coefficient of thermal expansion in the inner-layer section, and the peak intensity ratio through an XRD analysis between MAl2Si2O8 and Al2O3 in the surface-layer sections falls within the range of 0.05≦(MAl2Si2O8/Al2O3)≦5, wherein M is at least one selected from the group consisting of Ca, Mg, Sr, and Ba.
Abstract translation:一种多层陶瓷基板,包括内层部分,堆叠在内层部分的相对主表面上的表面层部分和设置在表层部分的至少一个表面上的表面电极。 表层部分含有SiO 2 -MO-B 2 O 3 -Al 2 O 3基玻璃和Al 2 O 3填料,其中MO是选自CaO,MgO,SrO和BaO中的至少一种。 表层部的热膨胀系数低于内层部的热膨胀系数,表层部的MAl 2 Si 2 O 8与Al 2 O 3的XRD分析的峰强度比落在 0.05&(MAl2Si2O8 / Al2O3)≦̸ 5,其中M是选自Ca,Mg,Sr和Ba中的至少一种。
Abstract:
Hybrid solder for solder balls and filled paste are described. A solder ball may be formed of a droplet of higher temperature solder and a coating of lower temperature solder. This may be used with a solder paste that has an adhesive and a filler of low temperature solder particles, the filler comprising less than 80 weight percent of the paste. The solder balls and paste may be used in soldering packages for microelectronic devices. A package may be formed by applying a solder paste to a bond pad of a substrate, attaching a hybrid solder ball to each pad using the paste, and attaching the package substrate to a microelectronic substrate by reflowing the hybrid solder balls to form a hybrid solder interconnect.