Abstract:
A multilayer circuit board formed by integrally laminating a plurality of printed wiring boards in a multilayer structure so as to provide air gaps therebetween. An insulating layer is formed on each of both surfaces of a metal core substrate having through-hole forming apertures and a printed wiring layer is formed on the each insulating layer. Metal projections integrally formed on the metal core substrate serve as bonding electrodes between the adjacent wiring boards in the multilayer structure. The width of the air gap provided between the adjacent wiring boards is determined by the height of the metal projections.
Abstract:
A sheet-like thermally conductive resin composition containing 70 to 95 wt. % inorganic filler and 5 to 30 wt. % thermosetting resin composition, a lead frame as a wiring pattern, and an electrically conductive heat sink with a metal pole placed therein are superposed, heated and compressed, and thus are combined to form one body. Consequently, a thermally conductive circuit board with a flat surface is obtained in which a grounding pattern is grounded to the heat sink inside the insulating layer. Thus, the grounding pattern and the heat sink can be connected electrically with each other in an arbitrary position inside the insulating layer of the thermally conductive circuit board. Accordingly, there are provided a thermally conductive circuit board with high heat dissipation, high conductivity and high ground-connection reliability, a method of manufacturing the same, and a power module allowing its size to be reduced and its density to be increased.
Abstract:
A heating element (IC, transistor or the like) is placed on a printed circuit board and silicon grease is coated on the surface of the printed circuit board side of the heating element. The projection portion of a radiator with a step portion is inserted into the through hole of the printed circuit board and closely contacted with the lower portion of the heating element through the silicon grease. As a result, heat generated from the heating element is transferred to the projection portion of the radiator through the silicon grease and then transferred to the entirety of the radiator. Excessive silicon grease is collected in a step portion provided at the base of the projection portion of the radiator and prevented from leaking to other portion such as a portion on the board.
Abstract:
A carrier assembly (10) for a circuit board includes a copper insert (12) pressed into an aluminum carrier (14). The copper insert has an undercut recess (36). As the insert (12) is pressed into the carrier (14), a portion of the carrier material is flowed into the undercut recess (36) to provide a firm interlocking of the insert (12) with the carrier (14).
Abstract:
An electronic control unit, in particular for motor vehicles, having at least one electronic circuit arranged on at least one p.c. board and at least one additional circuit designed as a hybrid circuit which is attached to the at least one circuit arranged on the at least one p.c. board with an electrically conductive connection. A heat-conducting carrier element, which has mounting surfaces for attaching the at least one p.c. board and the at least one hybrid, is provided.
Abstract:
An enhanced heat dissipation device for a chip-on-flex packaged unit includes a flex circuit material attached to a front side of an integrated circuit die. The flex circuit material further attached to a bottom side of a printed circuit board having an opening to expose the flex circuit material. A top heat spreader thermally coupled to the flex circuit material through the opening in the printed circuit to dissipate heat from the front side of the integrated circuit die. The device further includes a bottom heat spreader, that is thermally coupled to back side of the integrated circuit die, to dissipate heat from the back side of the integrated circuit die. This enables the heat dissipation device to dissipate heat from both the front side and back side of the integrated circuit die, and thereby enhancing the heat dissipation for a given unit surface are of the integrated circuit die without increasing the volume of the heat dissipation device.
Abstract:
A package for power converters in which a multilayers circuits board holds the components. The winding of the magnetic elements are incorporated in the multilayers circuit board. The top and some portion of the bottom layer are also support for electronic components. Some of the components are placed on the top layer, which may not be utilized for magnetic winding, reducing the footprint of the magnetic elements to the footprint of the magnetic core. The power dissipating devices placed on pads which have a multitude of copper coated via connecting the top to bottom layers. Through these via the heat is transferred from the power devices to the other side of the PCB. In some of the embodiment of this invention the heat can be further transferred to a metal plate connected to the multilayers circuit board via a thermally conductive insulator. The baseplate has cutouts or cavities to accommodate the magnetic cores. A thermally conductive is placed between the magnetic core and the metal plate on the bottom of the cavity.
Abstract:
It is an object to facilitate assembly of an application device. A device (101) is provided with a heat sink (51) to radiate loss heat of an IGBT element (11) as a power semiconductor element to an external radiation fin. External terminals (5 and 6) connected to an external circuit substrate protrude in the direction in which the exposed surface of the heat sink (51) is directed. Accordingly, when assembling an application device by mounting the device (101) on the external circuit substrate together with other circuit elements, it is possible to mount the device (101) and other circuit elements together on the common main surface of the circuit substrate, i.e., on its main surface on the side opposite to the side where the radiation fin is attached. Accordingly, it is possible to collectively apply solder on the common main surface of the circuit substrate and collectively solder the device (101) and the other circuit elements.
Abstract:
A plug-in circuit card assembly for mounting high power electrical and optical components. The apparatus comprises a printed wiring circuit mounting high power electrical and optical components and connectors with conducting paths interconnecting the components and ones of the components with the connectors. The assembly has a structure attached to the printed wiring circuit with a heat sink formed at one end and having a pair of plates extending outward therefrom. One plate mounts a plurality of high thermal conducting pedestals each engaging corresponding ones of the components. Vent tubes are positioned between the plates with each vent tube having one end engaging one of the pedestals and an opposite end engaging the heat sink and functions to conduct heat from the components to the heat sink for dissipation.
Abstract:
A substrate for mounting optical components and electric circuit components thereon, comprising an insulating substrate on which an electric circuit is to be formed and a metallic portion on which optical components are to be fixed by welding. This construction may be reversed; that is, an insulated layer on which an electric circuit is to be formed may be provided on a metallic board on which optical components are to be fixed by welding. A device constituted using this substrate permits improvement of the frequency band characteristic and a long-term stabilization of optical coupling efficiency.