Abstract:
In an aspect, a touch screen panel including a sensing region and a peripheral region, a plurality of first sensing patterns located in the sensing region, a plurality of second sensing patterns arranged in an intersected direction with the first sensing patterns connected to each other by a connection part, an insulating layer formed on the first sensing pattern, the second sensing pattern, and the connection part, and patterned to expose both side of the first sensing pattern, at least one bridge located to intersect with the connection part on the insulating layer; and a plurality of wires located on a peripheral region and connected to the first sensing pattern and the second sensing pattern are provided.
Abstract:
A structure of a battery disconnection unit for an electric vehicle comprises a first high voltage relay switching to a position for supplying DC power supplied from the battery to the inverter or to a position for interrupting the supply of the corresponding DC power; a second high voltage relay switching to a position for supplying DC power supplied from the charger to the battery or to a position for interrupting the supply of the corresponding DC power; a PCB including a printed wired circuit electrically connected to the second high voltage relay and providing a DC power supply path between the charger and the battery; a substrate installed to support the first and second high voltage relays; and a metal bracket supporting the PCB and the substrate and operating as a heat sink radiating heat.
Abstract:
This invention is directed to a polymer thick film conductive composition that may be used in applications where thermoforming of the base substrate occurs, e.g., as in capacitive switches. Polycarbonate substrates are often used as the substrate and the polymer thick film conductive composition may be used without any barrier layer. Thermoformable electric circuits benefit from the presence of an encapsulant layer over the dried polymer thick film conductive composition. The electrical circuit is subsequently subjected to an injection molding process.
Abstract:
An electronic system comprising a printed circuit having first and second opposite surfaces, an electronic component attached to the second surface and a first device of protection against access attempts on the first surface side. The system comprises a second protection device at least partially covering, on the second surface side, the electronic component, and comprising at least one tab. The printed circuit comprises at least one through opening, the tab extending in the opening and being attached to the printed circuit. The tab comprises at least one conductive portion electrically contacting at least one first conductive track of the first surface.
Abstract:
A method for manufacturing a Z-directed component for insertion into a mounting hole in a printed circuit board according to one example embodiment includes forming the Z-directed component in a cavity formed by a constraining material that defines the outer shape of the Z-directed component. The constraining material is dissipated to release the Z-directed component from the constraining material and the Z-directed component is fired.
Abstract:
A power tool with a combined printed circuit board (PCB) that reduces internal wiring of the power tool and provides a large amount of air flow to internal components. In some instances, the combined PCB has a surfboard shape and includes a motor control unit and power switching elements (Field Effect Transistors or FETs). The combined surfboard PCB is located above the trigger, but below the motor and drive mechanism. In other instances, the combined PCB has a doughnut shape and is located coaxially with a motor shaft. The combined PCB may be positioned between a doughnut-shaped control PCB and the motor.
Abstract:
An accessory may be provided with a button controller having a microphone and switches. Plastic structures for the accessory may be formed by injection molding. Plastic structures may be molded around a printed circuit and wiring. The wiring may have a plastic jacket. The molded plastic structures may bond with the plastic jacket to retain the wiring. The molded plastic structures may be molded directly to the printed circuit board. Protrusions on the molded plastic structures may mate with openings in a metal clip. Housing structures may be mounted to the metal clip. The metal clip may be provided with a spring to short the metal clip to a trace on the printed circuit. The metal clip may also have a portion that receives electrostatic charge during electrostatic discharge events and that discharges the charge through the spring to the trace on the printed circuit.
Abstract:
The power conversion apparatus includes semiconductor modules and a circuit board on which a control circuit is formed. Each semiconductor module includes signal terminals electrically connected to the circuit board. The signal terminals of each semiconductor module are arranged in a line so as to form a terminal row along a first direction. The semiconductor modules are grouped into upper arm semiconductor modules and lower arm semiconductor modules each connected to a corresponding one of the upper arm semiconductor module. Upper arm terminal rows as the terminal rows of the upper arm semiconductor modules and lower arm terminal rows as the terminal rows of the lower arm semiconductor modules are arranged in a staggered manner along a second direction perpendicular to the first direction and to a third direction in which the signal terminals of the semiconductor modules project, the first, second and third directions being perpendicular to one another.
Abstract:
A Z-directed component for mounting in a mounting hole in a printed circuit board according to one example embodiment includes a body having a top surface, a bottom surface and a side surface. The body has a cross-sectional shape that is insertable into the mounting hole in the printed circuit board. A portion of the body is composed of an insulator. Four conductive channels extend through a portion of the body along the length of the body. The four conductive channels are spaced substantially equally around a perimeter of the body.
Abstract:
A protective circuit arranged on a Printed Circuit Board (PCB) has two conductor loops. At least one supply voltage track, at least one semiconductor switch and at least one control component are arranged on the PCB. A first terminal of the control component and a first terminal of the semiconductor switch are connected electrically. A first conductor loop of the protective circuit is arranged on the PCB so that it surrounds an electrically conducting connection between the supply voltage track and the semiconductor switch and/or the control component. A second conductor loop is arranged on the PCB so that it surrounds the electrically conducting connection between the first terminal of the control component and the first terminal of the semiconductor switch, and thereby screens the same from the semiconductor switch and at least from those regions of the control component that are also connected to the supply voltage track.