Abstract:
A cleaning arrangement (200) for a coating apparatus (100). The coating apparatus has a base (123) for carrying loose material. The base is rotatable to coat the loose material. The cleaning arrangement includes a base-scraping arrangement (127) and further includes a mounting arrangement (131) by which the base-scraping arrangement is mounted to be reversibly lowered, from a coating position, to a scraping position at which the base-scraping arrangement is positioned to scrape buildup from the base.
Abstract:
A method of manufacturing core-shell particles comprises: filling a buffer into a rotor, which is extended in a longitudinal direction, and is accommodated so as to be spaced apart from an inner wall side of a non-rotational hollow cylinder extended in a longitudinal direction and then discharging air to outside; rotating the rotor after terminating the filling; forming a core-shell precursor by supplying raw materials from a first storage and a second storage, which comprise a material forming a core, into an interior of the cylinder in which the rotor rotates; supplying a shell material for coating the core to the interior of the cylinder in which a core-type precursor is formed; separating a liquid comprising core-shell particles formed through the supplying into a solid and a liquid; and drying the core-shell particles obtained through the separating.
Abstract:
A device for manufacturing hot-mix coated materials includes an oven (1) having an enclosure (2) provided towards its two opposite ends with a main inlet (3) designed to receive granular materials and with a main outlet; and a heater (10) defining a combustion section (5) inside the enclosure (2). The enclosure (2) starting with the combustion section (5) and continuing with a drying section (6), and then with a mixing section (7). The device is further provided with a bypass outlet (11) and with an external mixer (12) that is connected to the bypass outlet (11), which outlet is fitted with a blocking system (15) allowing granular materials to pass towards the inlet (13) of the external mixer (12) and a closed position allowing granular materials to pass towards the mixing section (7).
Abstract:
A method for phlegmatising an explosive in an aqueous suspension including a dispersed phlegmatising agent. The phlegmatising agent is deposited on a surface of the explosive at low temperature utilizing opposite electric charges of the phlegmatising agent and the explosive. Also a device and a phlegmatised explosive.
Abstract:
The invention is directed to apparatus and methods for contacting gas and solids in the manufacture of edibles, and particularly in connection with coating edible particulate solids. A drum is positioned around an inner tube so that an annular space is defined between the drum and the tube. A rotatable spiral element defines a gas pathway in the annular space, such that rotation of the spiral pushes particulate solids through the drum while the solids are contacted with gas in the annular space.
Abstract:
Disclosed is a method for continuously coating cores by means of a dragée-making apparatus (15) comprising at least one rotatably driven drum (1) in which the product (5) is coated with one or several coating materials or is subjected to other treatment processes, such as spraying, drying. In order to be able to individually treat several small charges within a very limited space and with little effort regarding machines, the charge of the product that is to be processed is divided into small individual charges at the inlet end of the drum, is conveyed through the drum in a clocked manner, and is treated in individual treatment chambers (7, 8, 9, 10, 11, 12, 13) in the drum, which are separated from each other. The longitudinal conveyor (3) that conveys the individual charges through the drum embodies the individual treatment chambers in connection with the inner wall of the drum. The products that are to be treated constantly rotate in the revolving drum without being conveyed in the longitudinal direction, the longitudinal conveyor located in the drum conveying the product from one treatment station to the next as required. Additionally, a passage is formed from one chamber to the adjacent, other chamber if necessary.
Abstract:
An apparatus and method for producing glass fiber granules includes an applicator for applying a binder composition to the chopped strand segments; and a granulating assembly for imparting a cascading pseudo-helical action to the chopped strand segments. The granulating assembly includes a plurality of scoops positioned in a pattern within a rotating drum.
Abstract:
This invention relates to a method and device for processing of granules of solidified salts, by forming at least one injection zone in a fluidised bed where a feed stream of seed particles is contacted/coated by the liquid product by simultaneous injection of a feed stream of the seed particles and a feed stream of the liquid product to be sprayed, forming at least one granulation zone in the fluidised bed where contacted/coated seed particles may be dried and/or shaped and/or cooled to form granules, extracting granules from the at least one granulation zone(s) and sorting the extracted granules into three fractions; undersize granules with too small diameters compared to the desired size range, on-size granules with diameters within the desired size range, and oversize granules with too large diameters compared to the desired size range, passing the fraction of on-size granules to post-processing treatment for forming the product granules, removing the oversize, typically by reducing the size of at least a fraction of the oversize granules and admixing them with the fraction of undersize granules, and passing the fraction of undersize granules into the feed stream of seed particles, wherein the granules are made to pass through at least one classifier placed in the at least one granulation zone(s) of the fluidised bed, which segregates the granules according to their size and which passes at least a part of the segregated undersize granules back into the injection zone(s) for further enlargement. The invention also relates to a granulator for performing the inventive method.
Abstract:
This invention relates to coated particles used as phosphor particles for a phosphor screen of a display and a coating method for such particles. In the coating method of the present invention, first particles having a mean particle diameter of 3 to 10 μm are fluidized, and slurry drops obtained by suspending second particles having a mean particle diameter of 5 to 500 nm are generated from a spray nozzle or the like. Then, the fluidized first particles and the slurry drops are collided with each other, and thereby the second particles are coated on the surfaces of the first particles. Thereby, this invention is able to present coated particles wherein each surface of the first particles is uniformly coated with the second particles that are more microscopic than the first particles.
Abstract:
An apparatus is provided for uniformly coating particulate material. The apparatus includes a frame, a cylindrical drum rotatable about an axis tilted with respect to a horizontal plane, and a spray nozzle extending into the drum so as to spray a coating solution onto the particulate material tumbled within the rotating drum. Perforations in the side wall of the drum allow a flow of air through the drum so as to dry the material within the drum as it is coated with solution. A vacuum system removes the coated seeds from the drum without manual handling. In operation, the seeds form a dense mass, and migrate away from the mass as the seeds increase in size and weight from the sprayed coating. Eventually, all of the particles are uniformly coated, and thus a new mass is formed and the process repeated until the material reaches a desired size.