Abstract:
The present invention relates to an electron emitter having a nanostructure tip and an electron column using the same, and, more particularly, to an electron emitter which includes a nanostructure tip which can easily emit electrons, composed of carbon nanotube (CNT), zinc oxide nanotube (ZnO nanotube), zinc oxide nanorod, zinc oxide nanopillar, zinc oxide nanowire, zinc oxide nanoparticle or the like, and an electron column using the same.
Abstract:
An electron emitting element of the present invention includes an electron acceleration layer provided between an electrode substrate and a thin-film electrode, which electron acceleration layer includes (a) conductive fine particles and (b) insulating fine particles having an average particle diameter greater than that of the conductive fine particles. The electron emitting element satisfies the following relational expression: 0.3x+3.9≦y≦75, where x (nm) is an average particle diameter of the insulating fine particles, and y (nm) is a thickness of the thin-film electrode 3. Such a configuration allows modification of the thickness of the thin-film electrode with respect to the size of the insulating particles, thereby ensuring electrical conduction and allowing sufficient current to flow inside the element. As a result, stable emission of ballistic electrons from the thin-film electrode is possible.
Abstract:
According to the present invention, there is provided a light emitting device, which comprises at least one laser diode configured to emit light in at least one first wavelength region selected from spectrum regions including ultraviolet ray, blue light and green light; and a light emitting material for emitting light in a second wavelength region by the light in the first wavelength region emitted from the laser diode, the second wavelength region being different from the first wavelength region, wherein a color-mixed light is made by the light in the first wavelength region and the light in the second wavelength region. Since the laser diode having strong straightness is used as a light emission source, the color-mixed light implemented by the light emitting device of the present invention has strong straightness, so that it may be effectively used for long-distance illumination and flash.
Abstract:
A method of making an HID lamp and an HID lamp that includes a ceramic envelope with a ceramic capillary, wherein the capillary has an electrode feed-through therein that is sealed inside the capillary by a frit seal that extends inside the capillary a first distance from a distal end of the capillary, and a ceramic heat sink around at least half an external diameter of the capillary, wherein the heat sink is separated from the envelope and from the distal end of the capillary and the heat sink is in thermally conductive contact with the capillary and has an external diameter at least 1.5 times the external diameter of the capillary. In one preferred embodiment, the heat sink does not overlap the frit seal.
Abstract:
A field emission device (6), in accordance with a preferred embodiment, includes a cathode electrode (61), a gate electrode (64), a separator (62), and a number of emissive units (63) composed of an emissive material. The separator includes an insulating portion (621) and a number of conductive portions (622). The insulating portion of the separator is configured between the cathode electrode and the gate electrode for insulating the cathode electrode from the gate electrode. The emissive units are configured on the separator at positions proximate to two sides of the gate electrode. The emissive units are in connection with the cathode electrode via the conductive portions respectively. The emissive units are distributed on the separator adjacent to two sides of the gate electrode, which promotes an ability of emitting electrons from the emissive material and the emitted electrons to be guided by the gate electrode toward a smaller spot they bombard.
Abstract:
An electron emission material includes an electron emission material main body, a base metal layer disposed on the electron emission material main body, and a thermal electron emission layer disposed on the base metal layer.
Abstract:
A short arc type discharge lamp comprises a pair of electrodes, at least one of which has an electrode main body portion and an axis portion and/or a taper portion formed between the electrode main body portion and the axis portion, wherein in the at least one of the electrodes, the axis portion has an outer diameter smaller than that of the electrode main body portion, and at least one groove extending in an axis line direction of the electrode is formed in the electrode main body portion, the axis portion or the taper portion.
Abstract:
A surface emission type electron source according to the present invention includes a first electrode having a planar form; a second electrode having a planar form facing the first electrode; an electron passage layer disposed between the first electrode and the second electrode; and a power source part configured to apply a voltage to the second electrode and the first electrode. The electron passage layer includes plural quantum wires extending in a first direction from the first electrode to the second electrode. The quantum wires are spaced apart from each other at predetermined intervals, and electrons are emitted from a front surface of the second electrode. The quantum wires are made of silicon, and each of the quantum wires has plural thin parts having small thicknesses formed at predetermined intervals along the first direction.
Abstract:
An electron emission device includes a polycrystalline film of lanthanum boride, and a size of a crystallite which composes the polycrystalline film is equal to or more than 2.5 nm and equal to or less than 100 nm, preferably the film thickness of the polycrystalline film is equal to or less than 100 nm.
Abstract:
A method of manufacturing a light emitting unit includes steps of previously setting a threshold of luminous intensity, measuring luminous intensity of a measured light emitting unit, calculating an offset value between the threshold of luminous intensity and the measured luminous intensity, performing absorption of light by a light absorbing portion direct proportion to the offset value, and positioning the designed light absorbing portion onto an optical element of the measured light emitting unit. While light beam is radiated from the measured light emitting unit and passed through the light absorbing portion, few light energy is absorbed by the light absorbing portion to decrease the luminous intensity. Therefore, the light emitting unit with the light absorbing portion has a consistent luminous intensity due to the light absorbing ratio of the light absorbing portion is direct proportion to the offset luminous intensity.