Abstract:
A flash lamp is disclosed including an insulative envelope containing a gas and housing a pair of arcing electrodes and characterized by an instance of isolated conductive material being formed at a predetermined location on the inside of the envelope adjacent an electrode. Further disclosed is a corresponding method of manufacturing a flash lamp and apparatus for the same.
Abstract:
The invention relates to a dielectric barrier discharge lamp in a coaxial double-tube arrangement, comprising an exterior electrode (6), and interior electrode (7), and an auxiliary electrode (8). The interior electrode (7) is designed as an electrically conductive layer placed inside the interior tube (3) of the double-tube arrangement. The auxiliary electrode (8) is designed, for example, as a metal tube or pipe and is also disposed inside the interior tube (3), specifically in direct contact with the layer. In this manner, the conductivity of the interior electrode (S) is improved.
Abstract:
The present invention is a novel, high resolution, color, three-dimensional (3-D) volumetric display system for dynamic images—the video cube. The video cube consists of an air-tight glass cube filled with a gas mixture and multiple planes of thin wires arranged in alternating orthogonal layers. These wires may be set at voltage potentials capable of producing a glow discharge at the intersection of pairs of wires. Using a computer capable of storing dynamic image data and electronic controllers capable of energizing pairs of wires appropriately at the proper time 3-D dynamic images may be formed from multiple glows between excited wire pairs. The video cube may be used to display complex real-time information from computers and other digital processors with high accuracy for unlimited number of simultaneous unaided observers.
Abstract:
The invention provides a metal halide lamp comprising a ceramic discharge vessel. The discharge vessel encloses a discharge space which accommodates two electrodes and contains a salt filling. The salt filling comprises sodium iodide, thallium iodide, calcium iodide, cerium iodide, and barium iodide as a colorpoint stabilizing additive. The salt filling comprises calcium iodide and thallium iodide, and substantially no sodium iodide. The salt filling further comprises mercury iodide.
Abstract:
An electrodeless discharge lamp apparatus is provided which is increased in heat dissipation, making it possible to adapt to an increase in output of the apparatus. The electrodeless discharge lamp apparatus comprises a bulb containing a discharge gas and a coupler accommodated in a cavity formed in the bulb for generating a high frequency electromagnetic field. The coupler has: an induction coil; a core inserted into the coil; a heat conductor for conducting heat generated from the coil and the core; and a bobbin made of resin which accommodates the core and the heat conductor therein, and which has the coil wound therearound. The bobbin is designed to be separated in a radial direction of the coil, so that it is possible to separately mold the respective parts of the bobbin. Thus, it is not necessary to form, in the bobbin, a draft angle which has been necessary in the prior art when molding a tubular-shaped bobbin, and it is possible to make the thickness of the bobbin thin and uniform, so that the proportion of the bobbin in the volume of the cavity can be reduced to increase the proportion of the heat conductor.
Abstract:
It is possible to prolong service life of a discharge lamp of hot-cathode type and to reduce a diameter thereof. A discharge lamp 1 is provided with an electrode 3. The electrode 3 has a heater 4 made up a coil portion 4a, and a first lead wire portion 4b and a second lead wire portion 4c that respectively extend from rear ends of this coil portion 4a and applied by an electron emission material 3a. In the electrode 3, a first lead-in wires 6a is connected to the first lead wire portion 4b and a second lead-in wires 6b is connected to the second lead wire portion 4c, so that the coil portion 4a is arranged vertically along the tube axis of the glass tube 2. The electrode 3 is also provided a sleeve 7 covering surrounding of the coil portion 4a and having openings in the faces respectively opposite to the forward end and rear end of the coil portion 4a. An open end 7a of the sleeve 7 exceeds a forward end of the coil portion 4a, thereby protecting the coil portion 4a.
Abstract:
A flat fluorescent lamp (FFL) is provided. Strip electrodes of the FFL include a plurality of electrode branches, and a plurality of dielectric branches is arranged around the electrode branches, so as to increase the coating area of the fluorescent material. The distribution position of the fluorescent material may be adjusted by the dielectric branches, thus enhancing the brightness of the FFL and improving the uniformity of the output light. The present invention further provides a liquid crystal display which utilizes the FFL as a backlight source for achieving a better display effect.
Abstract:
Excimers are formed in a gas (30,130) by applying a pulsed potential between a first electrode (14,114) and a counter electrode (26, 126) so that corona discharge occurs, substantially without arcing, when the potential is on. The pulses or on-times of the potential desirably are about 100 microseconds or less. Use of a pulsed potential provides greater efficiency than a constant potential. Where the excimer-forming gas is a pure inert gas, the gas desirably contains less than 10 ppm water vapor.
Abstract:
Provided is a flat fluorescent lamp for a display device, having a plurality of discharge channels provided parallel to each other. The discharge channels have a characteristic structure of alternating the broad channel region with large cross-section area and the narrow channel region with small cross-sectional area along the longitudinal direction of the discharge channel. Thus, it is possible to enhance luminance of and improve discharge efficiency of the flat fluorescent lamp.
Abstract:
The invention relates to a dielectric barrier discharge lamp having outer electrodes which have ends in the form of plug connection elements.