Abstract:
A high intensity discharge lamp comprises a discharge vessel and two electrode rods having substantially flat ends facing to each other in opposite positions within the discharge vessel. A spiral coil of wire is wound at least on a part of the surface of at least one of the electrode rods. The spiral coil protrudes over said end of the corresponding electrode rod and thus forms a hollow cavity for extending dimmable wattage range of the lamp.
Abstract:
The multi-micro hollow cathode light source has a cathode plate, an insulation plate, an anode plate, and metal pieces. The insulation plate is sandwiched by the cathode plate and the anode plate. The cathode plate is made of copper. The centers of the cathode plate, insulation plate, and anode plate, are provided with holes, respectively. The holes form a penetrating though-hole. Linear slots are disposed in the cathode plate continuously extending from the hole in a cross shape. Each slot penetrates the cathode plate. Four metal pieces made of materials different from one another are inserted and buried in the four slots.
Abstract:
A high intensity discharge lamp comprises a discharge vessel and two electrode rods having substantially flat ends facing to each other in opposite positions within the discharge vessel. A spiral coil of wire is wound at least on a part of the surface of at least one of the electrode rods. The spiral coil protrudes over said end of the corresponding electrode rod and thus forms a hollow cavity for extending dimmable wattage range of the lamp.
Abstract:
There is provided apparatus (100) for forming a tube (9) by bending a metal sheet (11). The apparatus (100) comprises a forming station (102) comprising a forming pin (101) around which a metal sheet (11) can be wrapped and a plurality of form fingers (110, 120, 130, 140) radially spaced around the forming pin (101) and moveable relative thereto. Also provided are electrode emission source components (1) The components (1) comprise an open ended tube (9) and a-cap (13), wherein the tube (9) is formed from* a metal sheet (11) which is formed into a tubular configuration. Further provided are electrodes, electrical apparatus and methods of forming tubes.
Abstract:
The present invention provides a hollow cathode discharging apparatus including a hollow anode electrode, a hollow cathode electrode insulatedly fixed in the hollow anode electrode, a gas distribution pipe fixed in the hollow cathode electrode. The hollow anode electrode and the hollow cathode electrode are formed with anode openings and cathode openings respectively. Defined by the gas distribution pipe and the hollow cathode electrode and along the axis thereof is a spiral pathway winding through the cathode openings, so as to form a plurality of continuous and communicated reaction chambers. The gas distribution pipe is disposed with gas separation apertures communicated and adapted to introduce a reactive gas into the reaction chambers. The communicated reaction chambers enable uniform distribution of the reactive gas and thereby facilitate scale-up of the apparatus in axial. Accordingly, the present invention overcomes drawbacks of the prior art.
Abstract:
There is provided an electrode apparatus (1) comprising an emission source component (12) and a reservoir (4) of active material for replenishing active material of an emission surface of the source component (12) and/or for providing active material to the source component (12). Also provided are electrode assemblies, electrical apparatus comprising these and methods of manufacturing them.
Abstract:
The invention relates to a gas discharge lamp for EUV radiation with an anode (1) and a hollow cathode (2), wherein the hollow cathode (2) has at least two openings (3, 3′) and the anode (1) has a through hole (4), which is characterized in that the longitudinal axes (5, 5′) of the hollow cathode openings (3) have a common point of intersection S lying on the axis of symmetry (6) of the anode opening (4).
Abstract:
A hollow cathode having at least a portion of the inner, outer or both surfaces coated with a layer of a getter material is described. Some methods for the production of the hollow cathode of the invention are also described, which include cathodic and electrophoretic deposition of the getter layer onto the hollow cathode.
Abstract:
A cold cathode fluorescent lamp. The cold cathode fluorescent lamp includes a transparent tube, at least one absorptive structure and at least one absorptive layer. The transparent tube is filled with a gas including a material capable of arousing light by means, of an electric potential. The absorptive structure is disposed on one end of the transparent tube and includes a supporting mechanism having at least one opening. The absorptive layer is formed in the opening and is not filled with the opening.
Abstract:
A gas discharge lamp has a tubular envelope containing tubular electrodes at opposite ends. An annular support member of a compressible ceramic fiber is supported in a groove around each electrode and is compressed against the inside surface of the envelope. Movement of the electrodes relative to the envelope is damped by the support member.