Abstract:
A reactor for introducing gas into a fluid comprises a mixing tank (12, 43) for the fluid and a partition means (13,45) for dividing the tank into at least two chambers (21, 89) and (23, 91). The reactor further comprises a first pump means (14, 47) located in one of the chambers for circulating the fluid downwards in one chamber and then upward in the other chamber and an aerator assembly (29, 49) for aerating a sidestream of the fluid and introducing the aerated fluid into the tank for mixing the aerated fluid with the circulating fluid in the tank. The aerator assembly comprises a bank of venturi aerators (38, 57) each having an aerator inlet; an aerator outlet; and a constriction intermediate the aerator inlet and the aerator outlet for creating a region of reduced pressure in the fluid, the constriction being elongate in a section transverse to the direction of flow of the fluid through the constriction; and a means for introducing the gas into the constriction to aerate the fluid.
Abstract:
The invention relates to a method for intensifying the reactions in metallurgical reaction vessels containing a molten bath to which the reacting agents are fed below and above the bath surface, the gases emerging from the metal bath being afterburned in the space above the smelt by oxidizing gases injected into said gas space and the resulting heat being transferred to the molten bath, whereby fractions of the smelt in the form of drops, splashes and large particles of the smelt move on ballistic trajectories within the gas space of said metallurgical reaction vessel, being ejected from the smelt like a fountain through the amount of gas introduced via underbath tuyeres.
Abstract:
A method of leaching a gold/copper-containing sulfidic mined material that includes two leach stages, with a gold leach stage leaching gold from the material with a gold leach liquor and a copper leach stage leaching copper from the material with a copper leach liquor.
Abstract:
A compact hyperspectral imager adapted to operate in harsh environments and to conduct post acquisition signal processing to provide automated and improved hyperspectral processing results is disclosed. The processing includes luminance and brightness processing of captured hyperspectral images, hyperspectral image classification and inverse rendering to produce luminance invariance image processing.
Abstract:
Described herein is a method and system for classifying rock types in a rock body. The method comprises the steps of obtaining spectral data from a spectral measurement (202) of a surface region of the rock body and then determining a first spectral ratio between two wavelength bands of the spectral data. From the first spectral ratio it can be assessed (204) whether the measurement is a high-angle measurement, and if the measurement is not a high-angle measurement then a further spectral ratio between two further wavelength bands of the spectral data is determined (208). The further spectral ratio is then compared (210) with a corresponding diagnostic criterion to assess whether the surface region comprises a first rock type associated with the further spectral ratio and diagnostic criterion.
Abstract:
Drill hole sequence planning equipment 14 includes a position determining module 18 for determining an initial location of a mobile drill rig 12. A selection module 24 selects a destination location for the drill rig 12. A corridor establishment module 26 establishes a corridor between the initial location of the drill rig 12 and its destination location, the corridor having a selected width. A processing unit 28 is responsive to the modules 18, 24 and 26 for selecting a hole location of each hole within the corridor to be drilled by the drill rig 12 sequentially as it moves from its initial location to its destination location.
Abstract:
A method and an apparatus method for producing direct reduced iron (DRI) from iron ore using biomass as a source of reductant and as a heating source of the iron ore and electromagnetic energy as a further heating source in a furnace having multiple zones. The zones include a preheat zone and a reduction zone between an inlet for briquettes of iron ore and biomass and an outlet for direct reduced iron. The method includes counter-current movement of (a) briquettes of iron ore and biomass in a direction from the inlet to the outlet and (b) combustible gases in an opposite direction in the furnace.
Abstract:
A method for producing direct reduced iron (“DRI”) from iron ore and biomass is disclosed. The method includes heating a batch of iron ore and biomass in each oven chamber of a non-recovery batch oven by a combination (i) the thermal mass of a lining of the oven chamber and (ii) combustion of a fuel gas from at least one other oven chamber and at least partially reducing the iron ore and forming DRI. The method also includes discharging gases from the oven chamber through passageways in a wall and a floor of the oven chamber and further combusting combustible gases and transferring heat to the wall and the floor of the oven chamber as the gases move through the passageways. The method also includes discharging at least a portion of gases from the oven chamber, without passing the gases through passageways in the floor of the oven chamber, and using these gases as a fuel gas in subsequent combustion heating in other batch oven chambers when a first predetermined trigger point is reached. A non-recovery batch oven is also disclosed.
Abstract:
Disclosed herein are a control method and system. The system includes: a deactivation control; a control centre controller for storing an association between the deactivation control and a selected set of mine sites; a plurality of autonomous drill rigs, each drill rig having a drill shutdown module to disable a function of the respective drill rig upon receipt of a deactivation command; and a mine site controller associated with each mine site, each mine site controller being coupled to all autonomous drill rigs located at the respective mine site with which the mine site controller is associated. Activating the deactivation control transmits a deactivation command from the deactivation control to the control centre controller. The control centre controller forwards the deactivation command to a mine site controller associated with each mine site in the set of mine sites for distribution to all autonomous drill rigs at that mine site.
Abstract:
A process and an apparatus for producing direct reduced iron (“DRI”) from iron ore and biomass are disclosed. The process includes heating a batch of iron ore and biomass in a batch oven (3) and reducing iron ore and forming a solid DRI product having a metallisation of 80-99% and generating an offgas. The process includes discharging the solid product at the end of the batch cycle and discharging offgas during the course of the batch cycle. The process operates the batch oven in a temperature range of 700-1100#C in a batch cycle time of 10-100 hours.