Abstract:
A thin film transistor (TFT) array substrate of a liquid crystal display (LCD) panel includes a first substrate, a gate located on the first substrate, a gate insulation layer located on the first substrate and covers the gate and the first substrate, a source layer located on the gate insulation layer to correspond to the gate, an etching stopping layer located on the source layer, and a source and a drain located on the etching stopping layer. The etching stopping layer is made of color photoresist.
Abstract:
An electronic device comprises a display module for displaying images, an identify module and a substrate where the display module and the identify module located on. When an object is pressed against the electronic device, the identify module obtains a grayscale image of the object pressed against the electronic device to identify the object. The identify module comprise a first thin film transistor (TFT) array. The display module comprises a second TFT array integrated with the first TFT array to form a TFT substrate arranged on the substrate.
Abstract:
An organic light emitting device includes a substrate and an organic compound layer sandwiched between a pair of electrodes composed of an anode and a cathode. The organic compound layer includes at least two active layers. A melting point of each of the two active layers gradually decreases along a direction from the anode to the cathode.
Abstract:
A display apparatus includes a display panel, a display driving module, a backlight module, and a backlight driving module. The backlight module includes a plurality of illumination units. The backlight driving module includes a driving circuit, a plurality of switch units, and a plurality of detecting units. Each of the switch units connects to exactly one of the illumination units, and each of the detecting units connects to exactly one of the illumination units and two of the illumination units simultaneously. When the illumination unit connected to the switch unit corresponding to the detecting unit is damaged, the detecting unit controls the connected switch unit to be turned off for cutting off an electrical connection between the driving circuit and the illumination unit corresponding to the connected switch unit, and the remaining illumination units continue to emit light.
Abstract:
A thin film transistor comprises a substrate, a gate electrode formed on the substrate, an electrically insulating layer covering the gate electrode, a channel layer made of a semiconductor material and formed on the electrically insulating layer, a source electrode formed on a first lateral side of the electrically insulating layer, and a drain electrode formed on an opposite second lateral side of the electrically insulating layer. The source electrode has an inner end covering a first outer end of the channel layer and electrically connecting therewith. The drain electrode has an inner end covering an opposite second outer end of the channel layer and electrically connecting therewith. An area of the channel layer adjacent to and not covered by one of the source electrode and the drain electrode has an electrical conductivity lower than the electrical conductivity of other area of the channel layer.
Abstract:
The present disclosure provides a liquid crystal display panel. The liquid crystal display panel includes a first substrate, a second substrate, and a liquid crystal layer. The liquid crystal layer is between the first substrate and the second substrate. The first substrate includes a first alignment layer. The second substrate includes a second alignment layer. The first alignment layer is a photo alignment layer. The second substrate is a rubbing alignment layer.
Abstract:
The disclosure provides a backlight module and a display device with a backlight module. The backlight module includes an emitting element, phosphors, and a quantum dot film. The emitting element is configured to provide lights with a first primary color. The phosphors have a second primary color. The quantum dot film includes numbers of quantum dots configured to provide emission spectrum with a third primary color. The light from the emitting element excites the phosphors and the quantum dot film to generate white mixed light.
Abstract:
The present invention provides an image compensating device for a joint display. The image compensating device includes a light incident surface, a parallel light emitting surface, and a plurality of light guiding channels extending from the light incident surface to the light emitting surface. The light emitting surface of image compensating device is greater than the light incident surface. The section area of each light guiding channel is gradually increased from the light incident surface to the light emitting surface, by which to extend the image provided by the peripheral region of each cell of the joint display and provide a seamless joint image.
Abstract:
A display device with a color conversion layer providing predetermined colors for full-color display. The color conversion layer includes a plurality of color conversion units. Each color conversion unit includes a quantum dot film. The color conversion unit is configured to receive light beams and converts the light beams to primary colors to emit. Each color conversion unit defines a plurality of areas, and each primary color corresponds to one of the areas of the color conversion unit.
Abstract:
A method manufactures a color filter including a transparent substrate, a black matrix and a resin layer having at least two colors of resin patterns. During an exposing process of the color filter, a particular photo mask is used to expose from a side of the transparent substrate adjacent to the black matrix. At a same time, the transparent substrate is exposed from another side of the transparent away from the black matrix without using the photomask.