Abstract:
A semiconductor device comprises a transistor formed in a semiconductor body having a first main surface. The transistor comprises a source region, a drain region, a channel region, a drift zone, a source contact electrically connected to the source region, a drain contact electrically connected to the drain region, and a gate electrode at the channel region. The channel region and the drift zone are disposed along a first direction between the source region and the drain region, the first direction being parallel to the first main surface. The channel region has a shape of a first ridge extending along the first direction. One of the source contact and the drain contact is adjacent to the first main surface, the other one of the source contact and the drain contact is adjacent to a second main surface that is opposite to the first main surface.
Abstract:
An arrangement is provided. The arrangement may include: a substrate having a front side and a back side, a die region within the substrate, a multi-purpose layer defining a back side of the die region, and an etch stop layer disposed over the multi-purpose layer between the multi-purpose layer and the back side of the substrate. The multi-purpose layer may be formed of an ohmic material, and the etch stop layer may be of a first conductivity type of a first doping concentration.
Abstract:
A method for processing a semiconductor device in accordance with various embodiments may include: providing a semiconductor device having a first pad and a second pad electrically disconnected from the first pad; applying at least one electrical test potential to at least one of the first pad and the second pad; and electrically connecting the first pad and the second pad to one another after applying the at least one electrical test potential.
Abstract:
A gated diode in a press-fit housing includes a base configured to be press-fit into an opening of a diode carrier plate and including a pedestal portion with a first flat surface, and a head wire including a head portion with a second flat surface and a wire portion. The base and the head wire form parts of the press-fit housing. The gated diode in the press-fit housing further includes a semiconductor die, a first solder layer engaging and electrically connecting the semiconductor die with the first flat surface of the base, and a second solder layer engaging and electrically connecting the semiconductor die with the second flat surface of the head wire.
Abstract:
A semiconductor device in a semiconductor substrate includes a trench in a first main surface of the semiconductor substrate. The trench includes a first trench portion extending in a first direction and a second trench portion extending in the first direction. The first trench portion is connected with the second trench portion in a lateral direction. The first trench portion and the second trench portion are arranged one after the other along the first direction. The semiconductor device further includes a trench conductive structure having a conductive material disposed in the first trench portion, and a trench capacitor structure having a capacitor dielectric and a first capacitor electrode disposed in the second trench portion. The first capacitor electrode includes a layer lining a sidewall of the second trench portion.
Abstract:
What is provided is a field effect component including a semiconductor body, which extends in an edge zone from a rear side as far as a top side and which includes a semiconductor mesa, which extends in a vertical direction, which is perpendicular to the rear side and/or the top side. The semiconductor body in a vertical cross section further includes a drift region, which extends at least in the edge region as far as the top side and which is arranged partly in the semiconductor mesa, and a body region, which is arranged at least partly in the semiconductor mesa and which forms a pn junction with the drift region. The pn junction extends between two sidewalls of the semiconductor mesa.
Abstract:
Disclosed is a transistor device. The transistor device includes a plurality of field structures which define a plurality of semiconductor mesa regions in a semiconductor body, and each of which comprises a field electrode and a field electrode dielectric; a plurality of gate structures in each semiconductor mesa region, wherein each gate structure comprises a gate electrode and a gate dielectric, and is arranged in a trench of the semiconductor mesa region; a plurality of body regions, a plurality of source regions, and a drift region. Each body region adjoins the gate dielectric of at least one of the plurality of gate structures, and is located between one of the plurality of source regions and the drift region.
Abstract:
One embodiment provides a semiconductor component including a semiconductor body having a first side and a second side and a drift zone; a first semiconductor zone doped complementarily to the drift zone and adjacent to the drift zone in a direction of the first side; a second semiconductor zone of the same conduction type as the drift zone adjacent to the drift zone in a direction of the second side; at least two trenches arranged in the semiconductor body and extending into the semiconductor body and arranged at a distance from one another; and a field electrode arranged in the at least two trenches adjacent to the drift zone. The at least two trenches are arranged at a distance from the second semiconductor zone in the vertical direction, a distance between the trenches and the second semiconductor zone is greater than 1.5 times the mutual distance between the trenches, and a doping concentration of the drift zone in a section between the trenches and the second semiconductor zone differs by at most 35% from a minimum doping concentration in a section between the trenches.
Abstract:
One embodiment of a semiconductor device includes a dense trench transistor cell array. The dense trench transistor cell array includes a plurality of transistor cells in a semiconductor body. A width w3 of a transistor mesa region of each of the plurality of transistor cells and a width w1 of a first trench of each of the plurality of transistor cells satisfy the following relationship: w3
Abstract:
One embodiment provides a semiconductor component including a semiconductor body having a first side and a second side and a drift zone; a first semiconductor zone doped complementarily to the drift zone and adjacent to the drift zone in a direction of the first side; a second semiconductor zone of the same conduction type as the drift zone adjacent to the drift zone in a direction of the second side; at least two trenches arranged in the semiconductor body and extending into the semiconductor body and arranged at a distance from one another; and a field electrode arranged in the at least two trenches adjacent to the drift zone. The at least two trenches are arranged at a distance from the second semiconductor zone in the vertical direction, a distance between the trenches and the second semiconductor zone is greater than 1.5 times the mutual distance between the trenches, and a doping concentration of the drift zone in a section between the trenches and the second semiconductor zone differs by at most 35% from a minimum doping concentration in a section between the trenches.