Abstract:
A microelectronic assembly can include a microelectronic package connected with a circuit panel. The package has a microelectronic element having a front face facing away from a substrate of the package, and electrically connected with the substrate through conductive structure extending above the front face. First terminals provided in first and second parallel grids or in first and second individual columns can be configured to carry address information usable to determine an addressable memory location from among all the available addressable memory locations of the memory storage array. The first terminals in the first grid can have signal assignments which are a mirror image of the signal assignments of the first terminals in the second grid.
Abstract:
A microelectronic assembly can include a circuit panel having first and second panel contacts at respective first and second surfaces thereof, and first and second microelectronic packages each having terminals mounted to the respective panel contacts. Each package can include a microelectronic element having a face and contacts thereon, a substrate having first and second surfaces, and terminals on the second surface configured for connecting the package with an external component. The terminals can include first terminals at positions within first and second parallel grids. The first terminals can be configured to carry address information usable by circuitry within the package to determine an addressable memory location from among all the available addressable memory locations of a memory storage array within the microelectronic element. Signal assignments of the first terminals in the first grid can be a mirror image of signal assignments of the first terminals in the second grid.
Abstract:
A microelectronic structure has active elements defining a storage array, and address inputs for receipt of address information specifying locations within the storage array. The structure has a first surface and can have terminals exposed at the first surface. The terminals may include first terminals and the structure may be configured to transfer address information received at the first terminals to the address inputs. Each first terminal can have a signal assignment which includes one or more of the address inputs. The first terminals are disposed on first and second opposite sides of a theoretical plane normal to the first surface, wherein the signal assignments of the first terminals disposed on the first side are a mirror image of the signal assignments of the first terminals disposed on the second side of the theoretical plane.
Abstract:
A microelectronic package includes a microelectronic element having memory storage array function overlying a first surface of a substrate, the microelectronic element having a plurality of contacts aligned with an aperture in the substrate. First terminals which are configured to carry all address signals transferred to the package can be exposed within a first region of a second substrate surface, the first region disposed between the aperture and a peripheral edge of the substrate. The first terminals may be configured to carry all command signals, bank address signals and command signals transferred to the package, the command signals being write enable, row address strobe, and column address strobe.
Abstract:
An electrically conductive lead is formed using a bonding tool. After bonding the wire to a metal surface and extending a length of the wire beyond the bonding tool, the wire is clamped. Movement of the bonding tool imparts a kink to the wire at a location where the wire is fully separated from any metal element other than the bonding tool. A forming element, e.g., an edge or a blade skirt provided at an exterior surface of the bonding tool can help kink the wire. Tensioning the wire using the bonding tool causes the wire to break and define an end. The lead then extends from the metal surface to the end.
Abstract:
A microelectronic package includes a microelectronic element having memory storage array function overlying a first surface of a substrate, the microelectronic element having a plurality of contacts aligned with an aperture in the substrate. First terminals which are configured to carry all address signals transferred to the package can be exposed within a first region of a second substrate surface, the first region disposed between the aperture and a peripheral edge of the substrate. The first terminals may be configured to carry all command signals, bank address signals and command signals transferred to the package, the command signals being write enable, row address strobe, and column address strobe.
Abstract:
A microelectronic assembly 5 can include first and second microelectronic packages 10a, 10b mounted to respective first and second opposed surfaces 61, 62 of a circuit panel 60. Each microelectronic package 10a, 10b can include a substrate 20 having first and second apertures 26a, 26b extending between first and second surfaces 21, 22 thereof, first and second microelectronic elements 30a, 30b each having a surface 31 facing the first surface of the substrate and a plurality of contacts 35 exposed at the surface of the respective microelectronic element and aligned with at least one of the apertures, and a plurality of terminals 25a exposed at the second surface in a central region 23 thereof. The apertures 26a, 26b of each substrate 20 can have first and second parallel axes 29a, 29b extending in directions of the lengths of the respective apertures. The central region 23 of the second surface 22 of each substrate 20 can be disposed between the first and second axes 29a, 29b of the respective substrate 20.
Abstract:
A microelectronic assembly (300) or system (1500) includes at least one microelectronic package (100) having a microelectronic element (130) mounted face up above a first surface (108) of a substrate (102), one or more columns (138, 140) of contacts (132) extending in a first direction (142) along the microelectronic element front face. Columns (104A, 105B, 107A, 107B) of terminals (105 107) exposed at a second surface (110) of the substrate extend in the first direction. First terminals (105) exposed at surface (110) in a central region (112) thereof having width (152) not more than three and one-half times a minimum pitch (150) of the columns of terminals can be configured to carry address information usable to determine an addressable memory location. An axial plane of the microelectronic element can intersect the central region.
Abstract:
A chip package has multiple chips that may be arranged side-by-side or in a staggered, stair step arrangement. The contacts of the chips are connected to interconnect pads carried on the chips themselves or on a redistribution substrate. The interconnect pads desirably are arranged in a relatively narrow interconnect zone, such that the interconnect pads can be readily wire-bonded or otherwise connected to a package substrate.
Abstract:
A microelectronic assembly may include a substrate having an opening extending between first and second oppositely facing surfaces of the substrate, the opening elongated in a first direction; and at least one microelectronic element having a front face facing and attached to the first surface of the substrate and a plurality of contacts at the front face overlying the opening, the microelectronic element having first and second opposite peripheral edges extending away from the front face. The first peripheral edge extends beyond, or is aligned in the first direction with, an inner edge of the opening, and the opening extends beyond the second peripheral edge.