Abstract:
A FinFET includes a substrate. Numerous fin structures are defined on the substrate. A gate structure crosses each fin structure. Two epitaxial layers are disposed at two side of the gate structure, respectively. Each epitaxial layer has a top surface including a second recessed and protruding profile. A contact plug contacts the second recessed and protruding profile. The second recessed and protruding profile increases the contact area between the contact plug and the epitaxial layer.
Abstract:
A method of forming a fin-shaped structure includes the following step. A substrate having a first area and a second area is provided. An epitaxial structure is formed in the first area. An epitaxial structure is formed in the second area after the epitaxial structure in the first area is formed, wherein the surface area of the epitaxial structure in the first area is different from the surface area of the epitaxial structure in the second area.
Abstract:
The present invention provides a method for forming a semiconductor device having a metal gate. The method includes firstly, a substrate is provided, and a first semiconductor device and a second semiconductor device are formed on the substrate, having a first gate trench and a second trench respectively. Next, a bottom barrier layer is formed in the first gate trench and a second trench. Afterwards, a first pull back step is performed, to remove parts of the bottom barrier layer, and a first work function metal layer is then formed in the first gate trench. Next, a second pull back step is performed, to remove parts of the first work function metal layer, wherein the topmost portion of the first work function metal layer is lower than the openings of the first gate trench and the second gate trench.
Abstract:
A semiconductor device includes a plurality of gate structures, a source/drain region, a first dielectric layer, and a floating spacer. The gate structures are disposed on a substrate, and each gate structure includes a gate electrode, a capping layer and a spacer surrounding the gate electrode and the capping layer. The source/drain region is disposed at two sides of the gate electrode. The first dielectric layer is disposed on the substrate and has a height being less than a height of the gate electrode. The floating spacer is disposed on a side wall of the spacer, and also on the first dielectric layer.
Abstract:
A method for fabricating semiconductor device includes: forming a first semiconductor layer and an insulating layer on a substrate; removing the insulating layer and the first semiconductor layer to form openings; forming a second semiconductor layer in the openings; and patterning the second semiconductor layer, the insulating layer, and the first semiconductor layer to form fin-shaped structures.
Abstract:
A method for fabricating a semiconductor device includes providing a substrate having a first region and a second region, forming a first gate dielectric layer on the first region, forming a second gate dielectric layer on the second region, and forming a first gate structure on the first gate dielectric layer and the second gate dielectric layer. Preferably, the first gate dielectric layer and the second gate dielectric layer have different thicknesses.
Abstract:
A high voltage transistor structure including a substrate, a first isolation structure, a second isolation structure, a gate structure, a first source and drain region, and a second source and drain region is provided. The first isolation structure and the second isolation structure are disposed in the substrate. The gate structure is disposed on the substrate, at least a portion of the first isolation structure, and at least a portion of the second isolation structure. The first source and drain region and the second source and drain region are located in the substrate on two sides of the first isolation structure and the second isolation structure. The depth of the first isolation structure is greater than the depth of the second isolation structure.
Abstract:
A method for fabricating semiconductor device includes the steps of: forming a gate structure on a substrate; forming a spacer around the gate structure; and forming a buffer layer adjacent to the gate structure. Preferably, the buffer layer includes a crescent moon shape and the buffer layer includes an inner curve, an outer curve, and a planar surface connecting the inner curve and an outer curve along a top surface of the substrate, in which the planar surface directly contacts the outer curve on an outer sidewall of the spacer.
Abstract:
A semiconductor device includes a single diffusion break (SDB) structure dividing a fin-shaped structure into a first portion and a second portion, an isolation structure on the SDB structure, a first spacer adjacent to the isolation structure, a metal gate adjacent to the isolation structure, a shallow trench isolation (STI around the fin-shaped structure, and a second isolation structure on the STI. Preferably, a top surface of the first spacer is lower than a top surface of the isolation structure and a bottom surface of the first spacer is lower than a bottom surface of the metal gate.
Abstract:
A method for fabricating a semiconductor device includes the steps of: providing a substrate having a high-voltage (HV) region and a low-voltage (LV) region; forming a base on the HV region and fin-shaped structures on the LV region; forming a first insulating around the fin-shaped structures; removing the base, the first insulating layer, and part of the fin-shaped structures to form a first trench in the HV region and a second trench in the LV region; forming a second insulating layer in the first trench and the second trench; and planarizing the second insulating layer to form a first shallow trench isolation (STI) on the HV region and a second STI on the LV region.