Abstract:
A flow-through sorbent comprising at least 30 wt % of a metal sulfide, and a binder. The sorbent may be used, for example, for the removal of a contaminant, such as mercury, from a fluid stream.
Abstract:
The present invention relates to adsorption vapor recovery systems for recovering vaporized gasoline, distillates, benzene, solvents and the like from vapor mixtures, including at least one adsorber containing honeycomb adsorbents.
Abstract:
The present invention relates to adsorbent honeycomb monoliths and other porous monoliths impregnated with alkaline and/or caustic salts of alkaline metal or alkaline earth metal. The impregnated monoliths have high adsorption capacity and low flow resistance, yet with minimized flammability, suitable for use in removal of acidic, malodorous and/or harmful gases.
Abstract:
It is intended to provide a volatile organic compound treatment apparatus having: an absorption treatment chamber in which absorption frames having absorbents for absorbing volatile organic compounds are aligned in a direction of a gas flow; an absorbent recovery treatment chamber that is provided with a discharge unit having a high voltage electrode, a ground electrode, and a dielectric; and a transfer mechanism for transferring the absorption frames present in an upstream of the gas flow to the absorbent recovery treatment chamber and transferring the absorption frames in the absorbent recovery treatment chamber to a downstream of the gas flow. The volatile organic compound treatment apparatus is capable of decomposing VOC without generating a large amount of harmful NOx and reduced in apparatus cost.
Abstract:
Filter and/or absorbent materials comprising an open cell foam having a surface, wherein the surface of the open cell foam is at least partially coated with a layer comprising photocatalytic titanium dioxide; methods for making such materials comprising: (a) providing a mixture comprising photocatalytic titanium dioxide in a binder; (b) immersing an open cell foam article in the mixture; (c) removing the article from the mixture and removing excess mixture from the article; and methods of treating gases or liquids by passing the gas or liquid through such a material wherein the material has been activated by UV radiation are described.
Abstract:
The present invention relates to composite structured adsorbents and methods of use therefor. The invention more particularly relates to composite structured adsorbents that can include a multi-channel framework (e.g., monoliths), the channels of the multi-channel framework containing adsorbent beads particles therein, with a channel-to-particle diameter ratio in the range of 1 to 10, more preferably 1 to 7 and even more preferably 1 to 5. In the case of non-spherical particles, the hydraulic diameter is used in the calculation of the channel-to-particle diameter. The composite structured adsorbents of the present invention can be used in various industrial applications, for example in pressure swing adsorption (PSA) or vacuum pressure swing adsorption (VPSA) processes to produce O2 from air.
Abstract:
The chemical filter supporting an ion-exchange resin comprising a fiber supporting body containing ion-exchange fiber and ion-exchange resin powder which is supported on the fiber supporting body is provided. The chemical filter possesses a large ion-exchange capacity per unit volume and exhibits high initial performance of eliminating ionized gaseous pollutants and excellent durability of the elimination performance.
Abstract:
A system comprising an activated carbon bed in contact with carbon foam is described. In some embodiments, the system, which may be a fluid treatment system, may comprise an activated carbon bed and a carbon foam section covering at least a portion of a surface of the activated carbon bed. In other embodiments, a fluid treatment system may comprise two or more activated carbon beds which are at least partially separated by one or more carbon foam sections. Further embodiments of a fluid treatment system may comprise a vessel, where one or more walls of the vessel comprises carbon foam, and an activated carbon bed contained within the vessel. Still further, a fluid treatment system may comprise an activated carbon bed and a carbon foam section at least partially contained within said activated carbon bed.
Abstract:
A dehumidifying element includes a super absorbing polymer (SAP), and a hygroscopic base, thereby maintaining hygroscopic characteristics regardless of aging and a high humidity absorbing rate and needing a smaller amount of energy for regeneration.
Abstract:
A support for solid phase extraction is provided for preventing the fracture of the porous body of the support and the space between the porous body and its container, and for processing various amounts of liquids to be processed while maintaining the ease of passage of liquid in use. The support for solid phase extraction comprises a ceramic substrate with one or more holes formed therein, and an inorganic porous material, filled in the hole or holes, which is produced by sol-gel transition accompanied by phase transition.