Abstract:
The present invention relates, in general, to an apparatus for an electrical power feedthrough suitable for use in high temperature, high pressure, and/or corrosive environments, such as, for example, within ammonia cracking (i.e., dissociation) systems. The present invention is fabricated from conductive nickel alloys which have high melting temperatures, and which are resistant to corrosion at high temperatures, as well as non-conductive ceramic materials which provide electrical insulation between the systems that feedthrough is coupled to.
Abstract:
The machinery and methods disclosed herein are based on the use of a specialized extruder configured to continuously convey and plasticize/moltenize selected lignocellulosic biomass and/or waste plastic materials into a novel variable volume tubular reactor, wherein the plasticized/moltenized material undergoes reaction with circumferentially injected supercritical water—thereby yielding valuable simple sugar solutions and/or liquid hydrocarbon mixtures (e.g., “neodiesel”), both of which are key chemical commodity products. The reaction time may be adjusted by changing the reactor volume. The machinery includes four zones: (1) a feedstock conveyance and plasticization/moltenization zone; (2) a steam generation and manifold distribution zone; (3) a central supercritical water reaction zone; and (4) a pressure let-down and reaction product separation zone. The machinery and methods minimize water usage—thereby enabling the economic utilization of abundant biomass and waste plastics as viable renewable feedstocks for subsequent conversion into alternative liquid transportation fuels and valuable green-chemical products.
Abstract:
The disclosure pertains to a urea production plant and process using a thermal stripper, wherein the reaction mixture is separated in two parts, wherein the first part is supplied at least in part to the thermal stripper and the second part at least in part bypasses the thermal stripper and is supplied to a medium pressure recovery section.
Abstract:
A high-efficiency, low-energy consumption and environmental-friendly recycling technology for PETE plastic waste is disclosed. The degradation of PETE plastic waste includes a method for attacking the —O— ester linkage in the repeat unit of PETE plastic with water in saturated pressure and CO2 in supercritical (Sc) conditions.
Abstract:
Disclosed are apparatuses, systems, methods, and devices for generating high-pressure gas such as hydrogen and oxygen. In one aspect, an apparatus is disclosed. The apparatus includes a reactor which includes a pressure vessel containing a metal compound configured to react with a liquid to generate the high-pressure gas when the liquid is available in the vessel. The reactor includes an outlet configured to pass the generated high-pressure gas out of the vessel. The apparatus also includes a receiver configured to store the generated high-pressure gas generated in the vessel and passed to a receiver via the outlet or passed directly to fuel cell or vehicle tank.
Abstract:
A continuous feeding and discharging system for solid material under high pressure is provided. The system includes a feeding assembly, a high pressure vessel, and a discharging assembly. The feeding assembly includes a raw material hopper that feeds solid raw material, a CO2 feeder that feeds dry ice, and a mixer that mixes the solid raw material with the dry ice to form an impermeable mixture. The high pressure vessel performs an extraction process under a supercritical condition to extract soluble components from the solid raw material. The discharging assembly includes a discharging extruder that receives the solid residue discharged from the high pressure vessel, a binder liquid feeder that feeds binder liquid to mix with the solid residue to form a uniform mixture and compacts the mixture to form impermeable pellets of residue, and a discharging valve that discharges the impermeable pellets of residue from the discharging extruder.
Abstract:
Supercritical upgrading reactors and reactor systems for upgrading a petroleum-based compositions comprising one or more catalyst layers and, in some embodiments, one or more purging fluid inlets, where one or more catalyst layers at least partially sift and convert heavy hydrocarbon fractions to light hydrocarbon fractions to produce an upgraded supercritical reactor product. In some embodiments, upgrading reactor systems comprise one or more supercritical upgrading reactors and one or more supercritical standby reactors alternating functions such that a supercritical upgrading reactor is converted to a supercritical standby reactor and the supercritical standby reactor is converted to a supercritical upgrading reactor, where the supercritical upgrading reactor upgrades a combined feed stream while a supercritical standby reactor delivers a cleaning fluid into the supercritical standby reactor.