Abstract:
Catalyst supports, catalyst systems, methods for the preparation thereof, and dimerization process therewith are provided. Catalyst systems comprise at least one elemental alkali metal and at least one paraffinic material deposited on an alkali metal carbonate catalyst support. Optionally, the catalyst system further comprises at least one promoter and at least one carbonaceous compound.
Abstract:
A crystalline, silica platinum catalyst structure is provided by soaking a hydrophobic, high surface area, crystalline silica (SiO.sub.2) lattice essentially free of aluminum oxide in the SiO.sub.2 lattice, such as silicalite in an aqueous solution of Pt(NH.sub.3).sub.4 Cl.sub.2 and then, drying, reducing and cooling the crystalline silica to leave, catalyst crystallites of platinum on the crystalline silica and in the pores thereof, and then providing an outer, porous, membrane coating of high molecular weight, organic polytetrafluoroethylene, polymeric material on the coated crystallites. The platinized, crystalline silica may be slurried with, polytetrafluoroethylene and a ceramic support coated with the slurry, so that a water repellent, water vapor and hydrogen or oxygen gas permeable, polytetrafluoroethylene matrix is provided on the support with the platinized, crystalline silica dispersed in the matrix. The catalyst has a high platinum content and high platinum dispersion and is particularly useful for hydrogen isotope exchange between liquid water and gaseous hydrogen or for such exothermic reactions as combining hydrogen and oxygen.
Abstract:
The present invention discloses an aqueous polymerization medium comprising (1) a catalyst composition which contains (a) an organometallic compound and (b) a transition metal compound wherein said catalyst composition is microencapsulated in a polyene product; and (2) water. This invention also discloses an aqueous polymerization medium comprising (1) a catalyst composition which is prepared by dissolving in an inert organic solvent containing at least one polyene (a) a transition metal compound, and (b) an organometallic compound; and (2) water. This aqueous polymerization medium is very useful in the polymerization of unsaturated hydrocarbon monomers. It is of greatest value in the polymerization of conjugated diolefin monomers into stereo-regulated polymers. This invention reveals a very useful process for producing polybutadiene composed essentially of syndiotactic 1,2-polybutadiene in an aqueous medium comprising polymerizing 1,3-butadiene in said aqueous medium in the presence of (1) a catalyst composition microencapsulated in a polyene product which contains (a) at least one cobalt compound selected from the group consisting of (i) .beta.-diketone complexes of cobalt, (ii) .beta.-keto acid ester complexes of cobalt, (iii) cobalt salts of organic carboxylic acids having 6 to 15 carbon atoms, and (iv) complexes of halogenated cobalt compounds of the formula CoX.sub. n, wherein X represents a halogen atom and n represents 2 or 3, with an organic compound selected from the group consisting of tertiary amine alcohols, tertiary phosphines, ketones and N,N-dialkylamides, and (b) at least one organoaluminum compound of the formula AlR.sub.3, wherein R represents a hydrocarbon radical of 1 to 6 carbon atoms; and (2) carbon disulfide.
Abstract:
Pyrophorically activated metals are suitable catalysts for electrolyzing water and for other reactions in which nickel or platinum are catalysts. Pyrophoricity can be eliminated without destroying the catalytic effects. Protective coverings can protect and preserve the pyrophoricity. Raney type activation leaves a little aluminum in the activated metal and this aids in catalytic action.
Abstract:
This disclosure is directed to the preparation of cohesive, self-sustaining electrode backing layers by a method comprising mixing from about 20 to about 50 weight parts of polytetrafluoroethylene (PTFE) having a particle size ranging from 0.05 to 0.5 micron with from about 50 to about 80 weight parts of a partially fluorinated carbon black of the formula CF.sub.x, where x is from about 0.1 to about 0.18 and having particles of a size ranging from about 50 to about 3000 angstroms to produce an electrode backing layer having a combination of enhanced electrical conductivity and hydrophobicity.
Abstract:
Macrosized catalysts suitable for promoting chemical reactions, especially to reduce pollutants in waste gas streams such as automobile exhaust, are described. The catalysts have one or more metal components, especially a platinum group metal component, as a catalytic promoter combined with a high surface area, refractory oxide support on a relatively catalytically-inactive carrier, especially a monolithic carrier which may be of the honeycomb type. An aqueous solution of an alumina precursor is added to the macrosize catalyst to provide protection against poisoning by extraneous materials such as lead, zinc, other metals, sulfur or phosphorus with which the catalysts may come in contact during use.
Abstract:
Under oxidizing conditions, a ruthenium catalyst system which is not protected will lose ruthenium by volatilization. A method is taught in this specification for stabilizing a ruthenium catalyst system against such volatilization under oxidizing conditions. The method is carried out by applying to a catalyst substrate a ruthenium catalyst system in which the catalytic material under oxidizing conditions is of the type La.sup.+3 Ni.sub.x.sup.+3 Ru.sub.1-x.sup.+3 O.sub.3 wherein x is in the range from 0.1 to 0.9.
Abstract:
Described are semipermeable microcapsules which comprise an outer semipermeable polymeric skin encapsulating a finely divided heterogeneous catalyst and a ferromagnetic material. The microcapsules are useful as magnetic, heterogeneous catalysts.
Abstract:
Beta-spodumene ceramic articles such as gas turbine regenerators are rendered more resistant to attack by moist sulfur oxidecontaining gases such as the exhaust gases from certain hydrocarbon combustion processes by providing a protective layer of fluorinated ethylene-propylene copolymer thereon.
Abstract:
The invention relates to the gettering of hydrogen and its isotopes, the gettering materials being painted or coated onto, or otherwise disposed in an area or volume from which hydrogen is to be removed.